Projet DD MACS 2

Martin Duguey¹, Imad Badda¹, Responsable du projet : Caroline Japhet²

23 juin 2021

Résumé

Dans le cadre de la simulation numérique des réacteurs nucléaires et de l'ANR "CINE-PARA" (Méthodes de parallélisation pour les cinétiques complexes) on va étudier les méthodes de décomposition de domaine espace-temps (DD). Ces techniques ont été introduites pour résoudre efficacement en parallèle des équations aux dérivées partielles dépendantes du temps. En effet, après un découpage du domaine de calcul en sous-domaines, le problème physique est résolu de façon découplée dans chaque sous-domaine (chacun pouvant être un processeur) sur tout l'intervalle de temps. Ensuite on échange des données sur l'interface espace-temps entre les sous-domaines, puis on itère ce procédé jusqu'à ce que la solution DD converge vers celle du problème global. Les conditions de transmission à l'interface sont des conditions de Robin, adaptées à la physique et permettant une convergence rapide de la méthode.

On s'intéresse ici à la résolution de l'équation d'advection-diffusion instationnaire, qui est un modèle simplifié de modèles plus complexes (équations de Navier-Stokes) qui interviennent dans les simulations des réacteurs à l'échelle locale moyennée. Dans un premier temps on regardera la méthode DD dans le cas stationnaire, ce qui permettra de simplifier l'étude et d'appliquer plusieurs résultats vus en cours de MACS 2.

Travail à réaliser

Le travail à réaliser consiste en les étapes suivantes :

- 1. Étude théorique de la méthode DD dans le cas de l'équation d'advection-diffusion stationnaire :
 - Réécriture du problème avec condition de Dirichlet homogène (comme vu dans [9]).
 - Écriture de l'algorithme DD pour ce problème (généralisation, avec ajout du terme d'advection, de celui fourni dans [5] pour l'équation de diffusion).
 - Caractère bien défini de l'algorithme de Schwarz : étude du problème local de Robin (application des théorèmes de trace et de Lax-Milgram vu dans [9]), et des conditions de transmissions.
 - Convergence de l'algorithme de Schwarz par estimation d'énergie (généralisation, avec ajout du terme d'advection, de la preuve fournie dans [5] pour l'équation de diffusion).
- 2. Étude de la méthode DD pour l'équation d'advection-diffusion instationnaire :
 - Définition et existence d'une solution faible pour le problème global (lecture et compréhension des résultats de [2] pour $\mathbf{b} = \mathbf{0}$, on admet qu'ils restent vrais si $\mathbf{b} \neq \mathbf{0}$, voir [8]).
 - Écriture de l'algorithme DD espace-temps pour ce problème (généralisation, avec ajout du terme d'advection, de celui fourni dans [5] pour l'équation de diffusion instationnaire).
 - Caractère bien défini de l'algorithme de Schwarz : on admet que le problème local de Robin est bien posé, et on vérifie que les conditions de transmissions permettent de bien définir l'agorithme.
 - Convergence de l'algorithme de Schwarz par estimation d'énergie (généralisation, avec ajout du terme d'advection, de la preuve fournie dans [5] pour l'équation de diffusion instationnaire).
- 3. Écriture du schéma en espace et en temps :
 - Écriture du schéma d'Euler implicite pour la disrétisation en temps (vu dans [1]).
 - Écriture du schéma non-conforme de Crouzeix-Raviart pour le problème de Robin semi-discret en temps (compréhension et adaptation de ce schéma à notre problème, qui est étudié dans [3] pour le Laplacien).
- $4. \ Implémentation \ en \ Freefem++:$
 - Comprendre les codes en Freefem++ fournis, pour résoudre l'équation de la chaleur (dans un domaine, puis avec 2 sous-domaines) et ajouter dans ces codes le terme d'advection.
 - Étudier l'effet des conditions de transmission (conditions aux limites de Robin), l'influence des paramètres physiques (diffusion, advection), et de la finesse du maillage.
 - Si le temps le permet, étudier un autre schéma temporel pour l'équation d'avection-diffusion : explicite sur l'advection et implicite sur la diffusion (ce permet de simplifier le calcul des paramètres de Robin).

^{1.} Sup Galilée, Ingénieurs M.A.C.S, Institut Gailée, Université Sorbonne Paris Nord, F-93430, Villetaneuse, France

^{2.} CNRS, UMR 7539, LAGA, Université Sorbonne Paris Nord, F-93430, Villetaneuse, France

1 Problème d'advection-diffusion stationnaire

Soit Ω un ouvert borné de \mathbb{R}^2 , régulier (ou polygone convexe), $c \ge 0$, $\nu > 0$, $\mathbf{b} \in (L^{\infty}(\Omega))^2$, avec $\nabla \cdot \mathbf{b} = 0$, $\bar{f} \in L^2(\Omega)$, et $u_D \in \mathcal{C}^2(\Omega)$. On considère la résolution du problème d'advection-diffusion-réaction suivant :

chercher $\bar{u} \in H^2(\Omega)$ tel que

$$c\bar{u} + \nabla \cdot (\mathbf{b}\bar{u}) - \nu\Delta\bar{u} = \bar{f} \qquad \text{dans } \Omega,$$
 (1a)

$$\bar{u} = u_D \quad \text{sur } \partial\Omega.$$
 (1b)

Ici c est le coefficient de réaction, $\nu > 0$ celui de diffusion, **b** le champ de vitesse, \bar{f} le terme source, et u_D la condition aux limites de Dirichlet.

Dans la suite on note γ_0 l'opérateur de trace de $H^1(\Omega)$ dans $L^2(\partial \Omega)$.

Remarque 1.1. Le problème avec $\nabla \cdot \mathbf{b}$ non-nul peut se traiter en ajoutant dans le problème variationnel le terme $\nabla \cdot \mathbf{b}$. Il faudra donc une condition de signe sur $c + \frac{1}{2}\nabla \cdot \mathbf{b}$ pour pouvoir appliquer le théorème de Lax-Milgram.

Problème équivalent avec Dirichlet homogène

Puisque $u_D \in \mathcal{C}^2(\Omega)$, et que les équations de (1) sont linéaires, en posant $u = \bar{u} - u_D$ (voir [9]), on est ramené au problème :

chercher $u \in H^2(\Omega)$ tel que

$$cu + \nabla \cdot (\mathbf{b}u) - \nu \Delta u = f \quad \text{dans } \Omega, \tag{2a}$$

$$u = 0 \quad \text{sur } \partial\Omega,$$
 (2b)

avec $f = \bar{f} + \nu \Delta u_D \in L^2(\Omega)$.

Remarque 1.2. On pourrait supposer que $u_D \in H^{\frac{1}{2}}(\partial\Omega)$, tel que son relèvement w (i.e. $w \in H^1(\Omega)$ tel que $\gamma_0(w) = u_D$ sur $\partial\Omega$) vérifie $\Delta w \in L^2(\Omega)$. On pose alors $u = \bar{u} - w$, $f = \bar{f} + \nu \Delta w$, et on se ramène à (2).

Théorème 1.3. Si $f \in L^2(\Omega)$, alors le problème (2) a une unique solution $u \in H^2(\Omega)$.

Démonstration. La preuve utilise le théorème de Lax-Milgram, et sera faite dans un cadre plus général (incluant la possibilité d'une condition de Robin sur une partie de $\partial\Omega$) dans la section 1.1.1 (voir Remarque 1.10).

Algorithme de Schwarz avec conditions de Robin

Cette méthode a été introduite par P.L. Lions en 1990 [7], de façon a pouvoir utiliser l'algorithme de Schwarz avec des domaines qui ne se recouvrent pas.

Le principe est de décomposer le domaine Ω en deux sous-domaines sans recouvrement : $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2$, avec Γ l'interface entre les sous-domaines, comme sur la Figure 1. On note \mathbf{n}_i la normale extérieure unitaire à $\partial \Omega_i$, i = 1, 2.

FIGURE 1: Décomposition de Ω en deux sous-domaines, sans recouvrement

Soit $\alpha_1 > 0$ et $\alpha_2 > 0$ les paramètres de Robin (que l'on choisira plus tard). L'algorithme de Schwarz avec condition de Robin est alors défini comme suit :

Algorithm 1 (Schwarz avec Robin pour l'équation d'advection-diffusion stationnaire)

Choisir une donnée initiale de Robin g_1^0, g_2^0 sur Γ

for k = 1, 2, ...

1. Résoudre le problème local de Robin, en parallèle, pour i=1,2

$$cu_i^k + \nabla \cdot (\mathbf{b}u_i^k) - \nu \Delta u_i^k = f \qquad \text{dans } \Omega_i, \qquad (3a)$$

$$u_i^k = 0 \qquad \text{sur } \partial\Omega_i \backslash \Gamma, \tag{3b}$$

$$\nu \partial_{\mathbf{n}_i} u_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} u_i^k + \alpha_i u_i^k = g_i^{k-1} \qquad \text{sur } \Gamma$$
(3c)

2. Mettre à jour le terme de Robin à l'interface

$$g_i^k = \nu \partial_{\mathbf{n}_i} u_j^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} u_j^k + \alpha_i u_j^k \quad \text{sur } \Gamma, \qquad j = 3 - i, \quad i = 1, 2.$$

$$\tag{4}$$

end for

Remarque 1.4. En pratique, pour calculer g_i^k , il n'est pas nécessaire de calculer le terme $\partial_{\mathbf{n}_i} u_j^k$ sur Γ . En effet, de (3c) et (4) on a, pour $k \ge 1$:

$$g_i^k = -g_j^{k-1} + (\alpha_1 + \alpha_2)u_i^k, \quad j = 3 - i, \ i = 1, 2.$$
(5)

Remarque 1.5. Le critère d'arrêt de l'algrithme sera précisé plus tard.

Remarque 1.6. En posant $\beta_i = \alpha_i + \frac{\mathbf{b} \cdot \mathbf{n}_i}{2}$, i = 1, 2, les conditions de Robin s'écrivent de façon équivalente sours la forme, pour i = 1, 2, j = 3 - i:

$$\nu \partial_{\mathbf{n}_i} u_i^k - \mathbf{b} \cdot \mathbf{n}_i u_i^k + \beta_i u_i^k = \nu \partial_{\mathbf{n}_i} u_j^{k-1} - \mathbf{b} \cdot \mathbf{n}_i u_j^{k-1} + \beta_i u_j^{k-1},$$

c'est-à-dire que l'on a fait une "combinaison linéaire" de "u" et du flux " $\nu\partial_{\mathbf{n}}u - \mathbf{b} \cdot \mathbf{n}u$ " (le terme "sous" la divergence dans l'équation, scalaire \mathbf{n}). On préfère garder l'écriture (4) pour la suite, car elle simplifie l'étude (si on symétrise le terme d'advection dans la formulation variationnelle).

1.1 Caractère bien défini de l'algorithme de Schwarz

Pour montrer que l'algorithme 1 est bien défini, il faut montrer d'une part que pour tout $k \ge 1$, chaque problème local (3) à une unique solution, pour $f \in L^2(\Omega_i)$ et $g_i^{k-1} \in L^2(\Gamma)$ donnés, et d'autre part qu'en supposant $g_i^0 \in L^2(\Gamma)$ pour i = 1, 2, on aura bien $g_i^k \in L^2(\Gamma)$ pour i = 1, 2, et pour tout $k \ge 0$.

1.1.1 Etude du problème local de Robin

Soit $k \in \mathbb{N}^*$ et $i \in [1, 2]$. Posons $u = u_i^k$, $\mathcal{O} = \Omega_i$, $g = g_i^k$, $\mathbf{n} = \mathbf{n}_i$, $\alpha = \alpha_i > 0$. On étudie alors le problème :

$$cu + \nabla \cdot (\mathbf{b}u) - \nu \Delta u = f \qquad \text{dans } \mathcal{O},$$
 (6a)

$$u = 0 \quad \text{sur } \partial \mathcal{O} \backslash \Gamma, \tag{6b}$$

$$\nu \partial_{\mathbf{n}} u - \frac{\mathbf{b} \cdot \mathbf{n}}{2} u + \alpha u = g \qquad \text{sur } \Gamma.$$
(6c)

Théorème 1.7. Posons $V = \{v \in H^1(\mathcal{O}); v = 0 \text{ sur } \partial \mathcal{O} \setminus \Gamma\}$. Le problème (6) est équivalent au problème variationnel suivant : chercher $u \in V$ tel que

$$\int_{\mathcal{O}} cuvdx + \frac{1}{2} \int_{\mathcal{O}} \left((\mathbf{b} \cdot \nabla u)v - \mathbf{b} \cdot \nabla v \right) u \right) dx + \nu \int_{\mathcal{O}} \nabla u \cdot \nabla v dx + \int_{\Gamma} \alpha uv d\sigma = \int_{\mathcal{O}} fv dx + \int_{\Gamma} gv d\sigma, \ \forall v \in V.$$
(7)

Preuve du Théorème 1.7 :

Preuve de (6) \Rightarrow (7). Soit $u \in H^2(\mathcal{O})$ solution de (6). On multiplie (6a) par $v \in V$ puis on intègre sur \mathcal{O} :

$$\int_{\mathcal{O}} cuvdx + \int_{\mathcal{O}} \nabla \cdot (\mathbf{b}u)vdx - \nu \int_{\mathcal{O}} (\Delta u)vdx = \int_{\mathcal{O}} fvdx, \quad \forall v \in V.$$

Afin de "symétriser" le terme d'advection (ce qui sera utile pour l'étude de la coercivité plus tard), on sépare le terme d'advection en deux, sous la forme

$$\int_{\mathcal{O}} \nabla \cdot (\mathbf{b}u) v dx = \frac{1}{2} \int_{\mathcal{O}} \nabla \cdot (\mathbf{b}u) v dx + \frac{1}{2} \int_{\mathcal{O}} \nabla \cdot (\mathbf{b}u) v dx$$

Pour le premier terme à droite, on utilise que $\nabla \cdot \mathbf{b} = 0$, et donc $\nabla \cdot (\mathbf{b}u) = \nabla \cdot (\mathbf{b})u + \mathbf{b} \cdot \nabla u = \mathbf{b} \cdot \nabla u$. Pour le second terme à droite, on utilise la formule de Green (voir [9]) :

$$\int_{\mathcal{O}} \nabla \cdot (\mathbf{b}u) v dx = -\int_{\mathcal{O}} (\mathbf{b} \cdot \nabla v) u dx + \int_{\partial \mathcal{O}} (\mathbf{b} \cdot \mathbf{n}) u v d\sigma.$$

Pour le terme de diffusion, comme $u \in H^2(\mathcal{O})$, on utilise la formule de Green

$$-\nu \int_{\mathcal{O}} (\Delta u) v dx = \nu \int_{\mathcal{O}} \nabla u \cdot \nabla v dx - \nu \int_{\partial \mathcal{O}} (\partial_{\mathbf{n}} u) v d\sigma.$$

On obtient ainsi :

$$\int_{\mathcal{O}} cuvdx + \frac{1}{2} \int_{\mathcal{O}} \left((\mathbf{b} \cdot \nabla u)v - \mathbf{b} \cdot \nabla v)u \right) dx + \nu \int_{\mathcal{O}} \nabla u \cdot \nabla v dx - \int_{\partial \mathcal{O}} (\nu \partial_{\mathbf{n}} u - \frac{\mathbf{b} \cdot \mathbf{n}}{2} u) v d\sigma = \int_{\mathcal{O}} f v dx, \ \forall v \in V.$$
(8)

Comme $v \in V$, alors v = 0 sur $\partial \mathcal{O} \setminus \Gamma$, et donc

$$\int_{\partial \mathcal{O}} (\nu \partial_{\mathbf{n}} u - \frac{\mathbf{b} \cdot \mathbf{n}}{2} u) v d\sigma = \int_{\Gamma} (\nu \partial_{\mathbf{n}} u - \frac{\mathbf{b} \cdot \mathbf{n}}{2} u) v d\sigma.$$
(9)

En utilisant maintenant la condition de Robin dans le terme de droite ci-dessus , on obtient

$$\int_{\Gamma} (\nu \partial_{\mathbf{n}} u - \frac{\mathbf{b} \cdot \mathbf{n}}{2} u) v d\sigma = \int_{\Gamma} (g - \alpha u) v d\sigma.$$
⁽¹⁰⁾

En remplaçant (10) dans (9), puis (9) dans (8), on obtient (7).

Preuve de $(7) \Rightarrow (6)$. Soit u solution de (7). On suppose que $u \in H^2(\mathcal{O})$. On commence par utiliser l'égalité vérifiée par u pour toutes les fonctions $\varphi \in \mathcal{D}(\mathcal{O}) \subset V$, qui devient (les termes sur Γ étant nuls dans ce cas car $\varphi = 0$ sur $\partial \mathcal{O}$)

$$\int_{\mathcal{O}} cu\varphi dx + \frac{1}{2} \int_{\mathcal{O}} \left((\mathbf{b} \cdot \nabla u)\varphi - \mathbf{b} \cdot \nabla \varphi) u \right) dx + \nu \int_{\mathcal{O}} \nabla u \cdot \nabla \varphi dx = \int_{\mathcal{O}} f\varphi dx, \quad \forall \varphi \in \mathcal{D}(\mathcal{O}).$$
(11)

En appliquant la formule de Green sur les troisième et quatrième termes à gauche, puis en regroupant les termes d'advection, on obtient

$$\int_{\mathcal{O}} (cu + \nabla \cdot (\mathbf{b}u) - \nu \Delta u - f) \varphi dx = 0, \quad \forall \varphi \in \mathcal{D}(\mathcal{O}).$$
(12)

 $\begin{array}{l} \text{Comme } u \in H^2(\Omega), \text{ on a } (cu + \nabla \cdot (\mathbf{b}u) - \nu \Delta u - f) \in L^2(\Omega). \text{ Mais } \mathcal{D}(\mathcal{O}) \text{ est dense dans } L^2(\mathcal{O}), \text{ donc si } v \in L^2(\mathcal{O}), \text{ il existe une suite } (\varphi_n)_{n \geq 0}, \text{ avec } \varphi_n \in \mathcal{D}(\mathcal{O}), \text{ telle que } \lim_{n \to +\infty} \|\varphi_n - v\|_{L^2(\mathcal{O})} = 0. \text{ De plus, d'après l'inégalité de Cauchy-Schwarz : } \end{array}$

$$\left| \int_{\mathcal{O}} \left(cu + \nabla \cdot (\mathbf{b}u) - \nu \Delta u - f \right) (\varphi_n - v) dx \right| \leq \| cu + \nabla \cdot (\mathbf{b}u) - \nu \Delta u - f \|_{L^2(\mathcal{O})} \| \varphi_n - v \|_{L^2(\mathcal{O})}.$$

Comme $\lim_{n \to +\infty} \|\varphi_n - v\|_{L^2(\mathcal{O})} = 0, \text{ alors } \lim_{n \to +\infty} \int_{\mathcal{O}} (cu + \nabla \cdot (\mathbf{b}u) - \nu\Delta u - f)\varphi_n dx = \int_{\mathcal{O}} (cu + \nabla \cdot (\mathbf{b}u) - \nu\Delta u - f)v dx.$ De plus, en prenant $\varphi = \varphi_n$ dans (12) on a $\lim_{n \to +\infty} \int_{\mathcal{O}} (cu + \nabla \cdot (\mathbf{b}u) - \nu\Delta u - f)\varphi_n dx = 0.$ Par conséquent on obtient

$$\int_{\mathcal{O}} (cu + \nabla \cdot (\mathbf{b}u) - \nu \Delta u - f) v dx = 0, \quad \forall v \in L^{2}(\mathcal{O})$$

c'est-à-dire

$$cu + \nabla \cdot (\mathbf{b}u) - \nu \Delta u = f$$
 p.p. dans \mathcal{O} . (13)

Comme on a admis que $u \in H^2(\mathcal{O})$, on peut donc utiliser la formule de Green dans (7) comme ci-dessus, et on a

$$\int_{\mathcal{O}} \left(cu + \nabla \cdot (\mathbf{b}u) - \nu \Delta u \right) v dx + \int_{\partial \mathcal{O}} \left(\nu \partial_{\mathbf{n}} u - \frac{\mathbf{b} \cdot \mathbf{n}}{2} u \right) v d\sigma + \int_{\Gamma} \alpha u v d\sigma = \int_{\mathcal{O}} f v dx + \int_{\Gamma} g v d\sigma, \quad \forall v \in V.$$

Comme v = 0 sur $\partial \mathcal{O} \setminus \Gamma$, l'intégrale sur $\partial \mathcal{O}$ devient une intégrale sur Γ , et donc on a

$$\int_{\mathcal{O}} \left(cu + \nabla \cdot (\mathbf{b}u) - \nu \Delta u - f \right) v dx + \int_{\Gamma} \left(\nu \partial_{\mathbf{n}} u - \frac{\mathbf{b} \cdot \mathbf{n}}{2} u + \alpha u - g \right) v d\sigma = 0, \quad \forall v \in V.$$
(14)

En utilisant (13) dans (14) on obtient

$$\int_{\Gamma} (\nu \partial_{\mathbf{n}} u - \frac{\mathbf{b} \cdot \mathbf{n}}{2} u + \alpha u - g) v d\sigma = 0, \quad \forall v \in V.$$
(15)

Mais $u \in H^2(\Omega)$ donc $\partial_{\mathbf{n}} u \in L^2(\Gamma)$ (voir [3] page 8). On a donc $(\nu \partial_{\mathbf{n}} u - \frac{\mathbf{b} \cdot \mathbf{n}}{2}u + \alpha u - g) \in L^2(\Gamma)$. Comme l'espace des traces des fonctions de $H^1(\mathcal{O})$ est dense dans $L^2(\Gamma)$ (pour un ouvert borné et régulier) alors (15) entraîne que

$$\nu \partial_{\mathbf{n}} u - \frac{\mathbf{b} \cdot \mathbf{n}}{2} u + \alpha u = g$$
 p.p. sur Γ .

On montre maintenant que le problème (7) est bien posé, ce qui montrera que le problème (6) l'est aussi. On note aussi que pour \mathcal{O} , on peut introduire l'inégalité de Poincaré.

Théorème 1.8. $\forall u \in V$, il existe $C_p > 0$ telle que :

$$\|u\|_{L^2(\mathcal{O})} \le \|\nabla u\|_{L^2(\mathcal{O})}$$

Démonstration. La démonstration suit le même raisonnement que dans l'espace $H_0^1(\mathcal{O})$ vu dans [9].

Théorème 1.9. On suppose que $f \in L^2(\mathcal{O})$ et $g \in L^2(\Gamma)$, et $\alpha > 0$, alors le problème variationnel (7) a une unique solution $u \in V$. De plus, il existe C > 0 tel que :

$$\|u\|_{H^1(\mathcal{O})} \leq C(\|f\|_{L^2(\mathcal{O})} + \|g\|_{L^2(\Gamma)}).$$
(16)

Démonstration. Nous allons appliquer le théorème de Lax-Milgram. Pour cela, on munit V de la norme de $H^1(\mathcal{O})$, et on pose, pour $u, v \in V$:

$$\begin{split} a(u,v) &:= \int_{\mathcal{O}} cuv dx + \frac{1}{2} \int_{\mathcal{O}} \big((\mathbf{b} \cdot \nabla u)v - \mathbf{b} \cdot \nabla v)u \big) dx + \nu \int_{\mathcal{O}} \nabla u \cdot \nabla v dx + \int_{\Gamma} \alpha uv d\sigma, \\ \ell(v) &:= \int_{\mathcal{O}} fv dx + \int_{\Gamma} gv d\sigma. \end{split}$$

Le problème variationnel (7) s'écrit de façon équivalente : chercher $u \in V$ tel que

$$a(u,v) = \ell(v), \quad \forall v \in V.$$
(17)

Vérifions maintenant les hypothèses du théorème de Lax-Milgram :

 $(V, \|\cdot\|_{H^1(\mathcal{O})})$ est un espace de Hilbert : ceci vient du fait que V est un sous-espace vectoriel fermé de $H^1(\mathcal{O})$. En effet, V est l'intersection de $H^1(\mathcal{O})$ avec l'image reciproque du fermé $\{0\}$ sur Γ , par l'application trace qui est continue.

 $a(\cdot, \cdot)$ est bilinéaire, continue sur $V \times V$: la bilinéarité de a vient de la linéarité de l'intégrale et des opérateurs identité et ∇ . Comme a est bilinéaire, pour montrer qu'elle est continue, il suffit de montrer qu'il existe C > 0 tel que

$$|a(u,v)| \leq C \|u\|_{H^1(\mathcal{O})} \|v\|_{H^1(\mathcal{O})}, \quad \forall u, v \in V.$$

Soient $u,v \in V.$ En utilisant l'inégalité triangulaire, on a

$$|a(u,v)| \leq |\int_{\mathcal{O}} cuvdx| + \frac{1}{2} |\int_{\mathcal{O}} \left((\mathbf{b} \cdot \nabla u)vdx \right| + \frac{1}{2} |\int_{\mathcal{O}} \mathbf{b} \cdot \nabla v)u \right) dx| + \nu |\int_{\mathcal{O}} \nabla u \cdot \nabla vdx| + |\int_{\Gamma} \alpha uvd\sigma|$$

Donc par l'inégalité de Cauchy-Schwarz, on obtient :

$$|a(u,v)| \leq c \|u\|_{L^{2}(\mathcal{O})} \|v\|_{L^{2}(\mathcal{O})} + \frac{1}{2} \|\mathbf{b}\|_{\infty} (\|\nabla u\|_{L^{2}(\mathcal{O})} \|v\|_{L^{2}(\mathcal{O})} + \|\nabla v\|_{L^{2}(\mathcal{O})} \|u\|_{L^{2}(\mathcal{O})}) + \nu \|\nabla u\|_{L^{2}(\mathcal{O})} \|\nabla v\|_{L^{2}(\mathcal{O})} + |\int_{\Gamma} \alpha u v d\sigma|^{2} \|\nabla v\|_{L^{2}(\mathcal{O})} \|\nabla v\|_{L^{2}(\mathcal{O})} \|\nabla v\|_{L^{2}(\mathcal{O})} + \|\nabla v\|_{$$

Mais par continuité de l'application trace et comme $\Gamma \subset \partial \mathcal{O}, \forall v \in V$, il existe $\mathcal{B} > 0$ telle que :

$$\|\gamma_0(v)\|_{L^2(\Gamma)} \leq \mathcal{B}\|v\|_{H^1(\mathcal{O})}$$

Ainsi par définition de la norme $\|\cdot\|_{H^1(\mathcal{O})}$, on obtient :

$$|a(u,v)| \leq (c + \|\mathbf{b}\|_{\infty} + \nu + \alpha \mathcal{B}^{2}) \|u\|_{H^{1}(\mathcal{O})} \|v\|_{H^{1}(\mathcal{O})} \|$$

Et par définition, $(c + \|\mathbf{b}\|_{\infty} + \nu + \alpha \beta^2) > 0$, donc en posant $C := c + \|\mathbf{b}\|_{\infty} + \nu + \alpha \beta^2$, on prouve la continuité de a.

 $a(\cdot, \cdot)$ est coercive sur V : Soit $u \in V.$ On a

$$\begin{aligned} a(u,u) &= \int_{\mathcal{O}} cu^2 dx + \nu \int_{\mathcal{O}} |\nabla u|^2 dx + \int_{\Gamma} \alpha u^2 d\sigma \\ &\geq \int_{\mathcal{O}} cu^2 dx + \nu \int_{\mathcal{O}} |\nabla u|^2 dx \quad (\operatorname{car} \, \alpha > 0) \\ &\geq \min(c,\nu) \|u\|_{L^2(\mathcal{O})}^2. \end{aligned}$$

Si c > 0 alors a est coercive, de constante de coercivité $\delta := \min(c, \nu)$. Si c = 0, alors on a

$$a(u,u) \ge \nu \int_{\mathcal{O}} |\nabla u|^2 dx$$

donc

$$a(u, u) \ge \nu(\frac{1}{2} \|\nabla u\|_{L^{2}(\mathcal{O})}^{2} + \frac{1}{2} \|\nabla u\|_{L^{2}(\mathcal{O})}^{2})$$

Puis on utilise l'inégalité de Poincaré (voir [9]) pour $v \in V$: il existe $C_P > 0$ tel que

$$\|v\|_{L^{2}(\mathcal{O})}^{2} \leq C_{P} \|\nabla v\|_{L^{2}(\mathcal{O})}^{2}$$

qui entraîne que

$$a(u, u) \ge \nu(\frac{1}{2} \|\nabla u\|_{L^{2}(\mathcal{O})}^{2} + \frac{1}{2C_{P}} \|u\|_{L^{2}(\mathcal{O})}^{2})$$

On obtient donc ici

$$a(u,u) \ge \frac{\nu}{2C_P} \|u\|_{H^1(\mathcal{O})}^2.$$

Ainsi *a* est coercive, de constante de coercivité $\delta := \frac{\nu}{2C_P}$.

 $\ell(\cdot)$ est linéaire continue sur V : la linéarité de ℓ vient de la linéarité de l'intégrale. Comme ℓ est linéaire, pour montrer qu'elle est continue, il suffit de montrer qu'il existe C > 0 tel que

$$|\ell(v)| \leq C \|v\|_{H^1(\mathcal{O})}, \quad \forall v \in V.$$

Soit $v \in V$. En utilisant l'inégalité triangulaire, on a :

$$|\ell(v)| \leq |\int_{\mathcal{O}} fv dx| + |\int_{\Gamma} gv d\sigma|$$

Donc par Cauchy-Schwarz, on obtient :

$$|\ell(v)| \leq ||f||_{L^2(\mathcal{O})} ||v||_{L^2(\mathcal{O})} + ||g||_{L^2(\Gamma)} ||\gamma_0(v)||_{L^2(\Gamma)}$$

Ainsi par définition de la norme $\|\cdot\|_{H^1(\mathcal{O})}$ et par continuité de l'application trace, on obtient :

 $|\ell(v)| \leq (\|f\|_{L^2(\mathcal{O})} + \mathcal{B}\|g\|_{L^2(\Gamma)}) \|v\|_{H^1(\mathcal{O})}$

En posant $C := \|f\|_{L^2(\mathcal{O})} + \mathcal{B}\|g\|_{L^2(\Gamma)}$, on prouve la continuité de ℓ .

Ainsi on peut appliquer le théorème de Lax-Milgram et affirmer l'existence et l'unicité du problème (17)

Montrons (16) : Soit $u \in V$ la seule solution de (17). En prenant en particulier v = u, on a, par continuité de a :

$$|a(u, u)| \leq (||f||_{L^2(\mathcal{O})} + \mathcal{B}||g||_{L^2(\Gamma)}) ||u||_{H^1(\mathcal{O})}$$

Et en utilisant le fait que a est coercive, de constante de coercivité $\delta > 0$, on a :

$$||u||_{H^1(\mathcal{O})} \leq \frac{1}{\delta} (||f||_{L^2(\mathcal{O})} + \mathcal{B}||g||_{L^2(\Gamma)})$$

En posant $C := \frac{1}{\delta}$, on a exactement (16). Cette inégalité permet de garantir la stabilité de la solution de notre problème (7).

Remarque 1.10. Prenons $\mathcal{O} = \Omega$. En refaisant les étapes des théorèmes précédents avec une condition de Dirichlet homogène sur $\partial \mathcal{O}$, et $V = H_0^1(\mathcal{O})$ on montre que le problème 2 est bien posé. En effet, les majorations pour la continuité de a et de ℓ seront sensiblement les mêmes à la différence que les termes initialement sur l'interface n'existent plus. En plus de cela la coercivité de a est démontrée par l'utilisation de l'inégalité de Poincaré, ce qui est licite puisque le bord est soumis à une condition de Dirichlet homogène et donc on est contraint de chercher une solution du problème variationnel dans $H_0^1(\Omega)$.

Théorème 1.11. On suppose que $f \in L^2(\mathcal{O})$ et $\alpha_i > 0$ pour i=1,2. Si $g_i^0 \in L^2(\Gamma)$, pour i=1,2, alors l'algorithme 1 est bien défini.

Démonstration. D'après le Théorème 1.9, si on montre $g_i^k \in L^2(\Gamma)$, pour i = 1, 2 pour tout $k \ge 0$, alors le problème local de Robin (3) aura une unique solution pour tout $k \ge 0$, et donc l'algorithme sera bien défini.

Montrons, par récurrence sur k, que $g_i^k \in L^2(\Gamma)$, pour i = 1, 2 pour tout $k \ge 0$.

initialisation k = 0. Par hypothèse on a g_i⁰ ∈ L²(Γ), pour i = 1, 2 donc le résultat est vrai pour k = 0.
Hérédité. Supposons que g_i^{k-1} ∈ L²(Γ) et montrons que g_i^k ∈ L²(Γ). Comme g_i^{k-1} ∈ L²(Γ), d'après le Théorème 1.9, le problème variationnel de Robin associé à (3) a une unique solution $u_i^k \in H^1(\Omega_i)$ et on peut définir sa trace sur Γ : $\gamma_{0,\Gamma}(u_i^k) \in L^2(\Gamma)$. Alors, de (5) (Remarque 1.4) et de l'hypothèse de récurrence, on a

$$g_i^k = -g_j^{k-1} + (\alpha_1 + \alpha_2)\gamma_{0,\Gamma}(u_i^k) \in L^2(\Gamma), \quad j = 3 - i, \ i = 1, 2.$$

Par conséquent on a $g_i^k \in L^2(\Gamma)$, pour i = 1, 2 pour tout $k \ge 0$, et donc l'algorithme 1 est bien défini.

1.2 Convergence de l'algorithme de Schwarz

Dans [6], nous avons vu la preuve en dimension 1 en calculant le taux de convergence de l'algorithme. Cette preuve parait difficile à adapter ici (on verra ce point plus tard), on va donc utiliser une technique d'estimation d'énergie comme dans [7, 5] pour l'équation de diffusion.

Théorème 1.12. On suppose que $f \in L^2(\Omega)$ et $\alpha_1 = \alpha_2 = \alpha > 0$ et $g_i^0 \in L^2(\Gamma)$ pour i = 1, 2. Alors la suite $(u_i^k)_{k \in \mathbb{N}}$ de solutions de (3) converge vers la solution u du problème (2) dans $H^1(\Omega_i)$.

Démonstration. Pour cela, introduisons l'erreur à l'itération $k : e_i^k = u_i^k - u$, où u_i^k est la solution de (3) et u la solution de (2). Les équations dans (3) et dans (2) étant linaires par rapport à u_i^k et à u respectivement, alors e_i^k vérifie le problème :

$$ce_i^k + \nabla \cdot (\mathbf{b}e_i^k) - \nu \Delta e_i^k = 0 \qquad \text{dans } \Omega_i, \qquad (18a)$$

$$e_i^k = 0$$
 sur $\partial \Omega_i \backslash \Gamma$, (18b)

$$\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k + \alpha_i e_i^k = \nu \partial_{\mathbf{n}_i} e_j^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_j^{k-1} + \alpha_i e_j^{k-1} \qquad \text{sur } \Gamma$$
(18c)

Soit i = 1 ou i = 2. On note $\|\cdot\|_i = \|\cdot\|_{L^2(\Omega_i)}$ et $(\cdot, \cdot)_i = (\cdot, \cdot)_{L^2(\Omega_i)}$. On multiplie l'équation (18a) par e_i^k puis on intègre sur Ω_i , on utilise la formule de Green (comme dans la Section 1.1.1), et on utilise que $e_i^k = 0$ sur $\partial\Omega_i \setminus \Gamma$:

$$c\|e_{i}^{k}\|_{i}^{2} + \nu\|\nabla e_{i}^{k}\|_{i}^{2} - \int_{\Gamma} \left(\nu\partial_{\mathbf{n}_{i}}e_{i}^{k} - \frac{\mathbf{b}\cdot\mathbf{n}_{i}}{2}e_{i}^{k}\right)e_{i}^{k}d\sigma = 0.$$
(19)

Ensuite, pour pouvoir utiliser la condition de transmission, on écrit

$$\left(\nu\partial_{\mathbf{n}_{i}}e_{i}^{k}-\frac{\mathbf{b}\cdot\mathbf{n}_{i}}{2}e_{i}^{k}\right)e_{i}^{k}=\frac{1}{4\alpha_{i}}\left(\left(\nu\partial_{\mathbf{n}_{i}}e_{i}^{k}-\frac{\mathbf{b}\cdot\mathbf{n}_{i}}{2}e_{i}^{k}+\alpha_{i}e_{i}^{k}\right)^{2}-\left(\nu\partial_{\mathbf{n}_{i}}e_{i}^{k}-\frac{\mathbf{b}\cdot\mathbf{n}_{i}}{2}e_{i}^{k}-\alpha_{i}e_{i}^{k}\right)^{2}\right).$$
(20)

En remplaçant (20) dans (19), on obtient

$$c\|e_i^k\|_i^2 + \nu\|\nabla e_i^k\|_i^2 + \frac{1}{4\alpha_i} \int_{\Gamma} \left(\nu\partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b}\cdot\mathbf{n}_i}{2}e_i^k - \alpha_i e_i^k\right)^2 d\sigma = \frac{1}{4\alpha_i} \int_{\Gamma} \left(\nu\partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b}\cdot\mathbf{n}_i}{2}e_i^k + \alpha_i e_i^k\right)^2 d\sigma.$$
(21)

On utilise maintenant la condition de transmission (18c) dans le membre de droite de (21) et on a, avec i=1,2, j=3-i:

$$c\|e_i^k\|_i^2 + \nu\|\nabla e_i^k\|_i^2 + \frac{1}{4\alpha_i}\int_{\Gamma} \left(\nu\partial_{\mathbf{n}_i}e_i^k - \frac{\mathbf{b}\cdot\mathbf{n}_i}{2}e_i^k - \alpha_i e_i^k\right)^2 d\sigma = \frac{1}{4\alpha_i}\int_{\Gamma} \left(\nu\partial_{\mathbf{n}_i}e_j^{k-1} - \frac{\mathbf{b}\cdot\mathbf{n}_i}{2}e_j^{k-1} + \alpha_i e_j^{k-1}\right)^2 d\sigma$$

En utilisant que $\mathbf{n}_i = -\mathbf{n}_j$ le terme de droite sous l'intégrale se réécrit sous la forme

$$\left(\nu\partial_{\mathbf{n}_{i}}e_{i}^{k}-\frac{\mathbf{b}\cdot\mathbf{n}_{i}}{2}e_{i}^{k}+\alpha_{i}e_{i}^{k}\right)^{2}=\left(-\nu\partial_{\mathbf{n}_{j}}e_{j}^{k-1}+\frac{\mathbf{b}\cdot\mathbf{n}_{j}}{2}e_{j}^{k-1}+\alpha_{i}e_{j}^{k-1}\right)^{2}=\left(\nu\partial_{\mathbf{n}_{j}}e_{j}^{k-1}-\frac{\mathbf{b}\cdot\mathbf{n}_{j}}{2}e_{j}^{k-1}-\alpha_{i}e_{j}^{k-1}\right)^{2}.$$

Ainsi on a, pour i = 1, 2 et j = 3 - i, en faisant l'hypothèse que $\alpha_i = \alpha_j = \alpha > 0$:

$$c\|e_i^k\|_i^2 + \nu\|\nabla e_i^k\|_i^2 + \frac{1}{4\alpha}\int_{\Gamma} \left(\nu\partial_{\mathbf{n}_i}e_i^k - \frac{\mathbf{b}\cdot\mathbf{n}_i}{2}e_i^k - \alpha e_i^k\right)^2 d\sigma = \frac{1}{4\alpha}\int_{\Gamma} \left(\nu\partial_{\mathbf{n}_j}e_j^{k-1} - \frac{\mathbf{b}\cdot\mathbf{n}_j}{2}e_j^{k-1} - \alpha e_j^{k-1}\right)^2 d\sigma.$$
(22)

Posons

$$B_k := \frac{1}{4\alpha} \sum_{i=1}^2 \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k - \alpha e_i^k \right)^2.$$

En sommant l'équation (22) sur i (avec j=3-i), on obtient, pour $k \ge 1$:

$$c\sum_{i=1}^{2} \|e_i^k\|_i^2 + \nu \sum_{i=1}^{2} \|\nabla e_i^k\|_i^2 + B_k = B_{k-1}.$$

On somme ensuite sur les itérations k :

$$c\sum_{k=1}^{K}\sum_{i=1}^{2} \|e_{i}^{k}\|_{i}^{2} + \nu\sum_{k=1}^{K}\sum_{i=1}^{2} \|\nabla e_{i}^{k}\|_{i}^{2} + \sum_{k=1}^{K}B_{k} = \sum_{k=1}^{K}B_{k-1},$$

ce qui équivaut, en simplifiant les termes, à

$$c\sum_{k=1}^{K}\sum_{i=1}^{2} \|e_{i}^{k}\|_{i}^{2} + \nu \sum_{k=1}^{K}\sum_{i=1}^{2} \|\nabla e_{i}^{k}\|_{i}^{2} + B_{K} = B_{0}.$$

$$c\sum_{k=1}^{K}\sum_{i=1}^{2} \|e_{i}^{k}\|_{i}^{2} + \nu\sum_{k=1}^{K}\sum_{i=1}^{2} \|\nabla e_{i}^{k}\|_{i}^{2} \leq B_{0}.$$
(23)

On fait maintenant tendre K vers $+\infty$, ce qui entraîne que la série $\sum_{k=1}^{+\infty} \sum_{i=1}^{2} \|\nabla e_i^k\|_i^2$ est convergente. Par conséquent son terme général tend vers zéro, c'est-à-dire :

 $\lim_{k \to +\infty} \|\nabla e_i^k\|_i = 0, \quad \text{pour } i = 1, 2,$

Et par l'inégalité de Poincaré la convergence de $\|\nabla e_i^k\|_i$ vers 0 lorsque k tend vers ∞ assure que $\|e_i^k\|_i$ converge vers 0 lorsque k tend vers ∞ . Ce qui signifie que u_i^k converge vers u dans $H^1(\Omega_i)^1$.

Remarque 1.13. Notons que si c>0, de (23) on a aussi la convergence de la série de terme général $||e_i^k||_i$, ce qui permet, dans le cas où l'on a une condition de Robin sur tout le bord du sous-domaine, d'avoir toujours la convergence dans $H^1(\Omega_i)$ (sans utiliser l'inégalité de Poincaré, qui n'est plus vraie dans ce cas).

2 Problème d'advection-diffusion dépendant du temps

Soit Ω un ouvert borné de \mathbb{R}^2 , régulier (ou polygone convexe). On considère la résolution du problème d'advectiondiffusion suivant :

chercher $u = u(\mathbf{x}, t)$ tel que

$$\partial_t u + \nabla \cdot (\mathbf{b}u) - \nu \Delta u = f \quad \text{dans } \Omega \times]0, T[,$$
(24a)

$$u(\cdot, 0) = u_0 \qquad \text{dans } \Omega, \tag{24b}$$

$$u = 0 \qquad \text{sur } \partial\Omega \times]0, T[, \qquad (24c)$$

avec $\nu > 0$ la diffusion, $\mathbf{b} = \mathbf{b}(\mathbf{x})$ le champ de vitesse (tel que $\nabla \cdot \mathbf{b} = 0$), $f = f(\mathbf{x}, t)$ le terme source, et $u_0 = u_0(\mathbf{x})$ la conditions initiale.

Existence de solutions faibles

Dans cette section on admet des résultats extraits de [2] (cas $\mathbf{b} = \mathbf{0}$) et [8] (cas \mathbf{b} quelconque). On "sépare" la variable temporelle en voyant $u(\mathbf{x}, t)$ comme une fonction de t à valeurs dans un espace de fonctions de la variable \mathbf{x} :

$$u: t \mapsto \{\mathbf{x} \mapsto u(\mathbf{x}, t)\}.$$

Pour définir une solution "faible", on introduit alors les espaces suivants :

- $\diamond \mathcal{C}^0(0,T;L^2(\Omega))$: l'espace des fonctions continues sur [0,T] à valeurs dans $L^2(\Omega)$.
- $\diamond \ L^{2}(0,T;H_{0}^{1}(\Omega)) := \left\{ u: [0,T] \to H_{0}^{1}(\Omega); \ \int_{0}^{T} \|\nabla u(t)\|_{L^{2}(\Omega)}^{2} dt < \infty \right\},$
- ↔ $H^{-1}(Ω)$: espace dual de $H^1_0(Ω)$. C'est un espace de Hilbert pour la norme duale notée $\|\cdot\|_{-1}$ On peut identifier les éléments de $H^{-1}(Ω)$ à des distributions (voir [2]).

$$\diamond \ L^2(0,T;H^{-1}(\Omega)) := \left\{ u : [0,T] \to H^{-1}(\Omega); \ \int_0^T \|u(t)\|_{-1}^2 dt < \infty \right\}$$

La formulation variationnelle de (24) s'obtient en multipliant (24a) par $v \in V_0$ puis en intégrant sur Ω et en utilisant les résultats de [2] page 116 (pour le terme avec la dérivée en temps) et la formule de Green (comme dans la section 1) :

$$\frac{d}{dt}(u(t),v)_{L^{2}(\Omega)} + \frac{1}{2}\int_{\Omega}\left((\mathbf{b}\cdot\nabla u)v - \mathbf{b}\cdot\nabla v)u\right)dx + \nu\int_{\Omega}\nabla u\cdot\nabla vdx = \int_{\Omega}fvdx, \,\forall v\in V_{0},\tag{25a}$$

$$u(0) = u_0.$$
 (25b)

Definition 2.1 (solution faible). Soit $u \in L^2(0, T; H_0^1(\Omega))$ telle que $\frac{\partial u}{\partial t} \in L^2(0, T; H^{-1}(\Omega))$. On dit que u est une solution faible de (24) si elle vérifie (25) (qui est au sens des distributions dans]0, T[).

Théorème 2.2. Si $\mathbf{b} \in (L^{\infty}(\Omega))^2$, $f \in L^2(\Omega \times]0, T[)$, alors le problème (24) a une unique solution faible u dans $L^2(0,T; H_0^1(\Omega)) \cap \mathcal{C}^0(0,T; L^2(\Omega))$.

Démonstration. Ce théorème est montré dans [2] (cas $\mathbf{b} = \mathbf{0}$) et [8] (cas \mathbf{b} quelconque), et on l'admet ici.

FIGURE 2: Décomposition de Ω en deux sous-domaines, sans recouvrement

Algorithme de Schwarz avec conditions de Robin

On découpe le domaine Ω en deux sous-domaines sans recouvrement : $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2$, avec $\Gamma \times [0, T]$ l'interface entre les sous-domaines, comme par exemple sur la Figure 2.

L'algorithme de Schwarz (ou de "relaxation d'onde") avec condition de Robin s'écrit :

Algorithm 2 (Schwarz avec Robin pour l'équation d'advection-diffusion instationnaire)				
Choisir une donnée initiale de Robin g_1^0, g_2^0 sur $\Gamma \times]0, T[$				
for $k = 1, 2,$				
1. Résoudre le problème local de Robin				

$$\partial_t u_i^{\kappa} + \nabla \cdot (\mathbf{b} u_i^{\kappa}) - \nu \Delta u_i^{\kappa} = f \qquad \text{dans } \Omega_i \times]0, T[, \qquad (26a)$$

$$u_i^k = u_0 \qquad \qquad \text{dans } \Omega \tag{26b}$$

$$u_i^k = 0 \qquad \text{sur } (\partial \Omega_i \cap \partial \Omega) \times]0, T[, \qquad (26c)$$

2. Mettre à jour le terme de Robin à l'interface espace-temps :

$$g_i^k = \nu \partial_{\mathbf{n}_i} u_j^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} u_j^k + \alpha_i u_j^k \quad \text{sur } \Gamma \times]0, T[, \qquad j = 3 - i, \quad i = 1, 2.$$

$$(27)$$

end for

Remarque 2.3. En pratique, pour calculer g_i^k , il n'est pas nécessaire de calculer le terme $\partial_{\mathbf{n}_i} u_j^k \operatorname{sur} \Gamma \times]0, T[$. En effet, de (26d) et (27) on peut montrer (comme à la Remarque 1.4), pour $k \ge 1$:

$$g_i^k = -g_j^{k-1} + (\alpha_1 + \alpha_2)u_i^k, \quad j = 3 - i, \ i = 1, 2.$$
⁽²⁸⁾

(à détailler)

2.1 Caractère bien défini de l'algorithme de Schwarz

Pour montrer que l'algorithme 2 est bien défini, il faut montrer d'une part que chaque problème local (26) à une unique solution, pour $f \in L^2(\Omega_i \times]0, T[)$ et $g_i^k \in L^2(\Gamma \times]0, T[)$ donnés, et d'autre part qu'en supposant $g_i^0 \in L^2(\Gamma \times]0, T[)$ pour i = 1, 2, on aura bien $g_i^k \in L^2(\Gamma \times]0, T[)$ pour i = 1, 2, et pour tout $k \ge 0$.

2.1.1 Etude du problème local de Robin

Soit $k \in \mathbb{N}^*$ et $i \in [1, 2]$. Posons $u = u_i^k$, $\mathcal{O} = \Omega_i$, $g = g_i^k$, $\mathbf{n} = \mathbf{n}_i$, $\alpha = \alpha_i > 0$. On étudie alors le problème :

$$\partial_t u + \nabla \cdot (\mathbf{b}u) - \nu \Delta u = f$$
 dans $\mathcal{O} \times]0, T[,$ (29a)

$$u(\cdot, 0) = u_0 \qquad \text{dans } \Omega, \tag{29b}$$

$$u = 0 \qquad \text{sur } (\partial \mathcal{O} \cap \partial \Omega) \times]0, T[, \tag{29c}$$

1. sur $V_i = \{v \in H^1(\Omega_i); v = 0 \text{ sur } \partial\Omega_i \setminus \Gamma\}, \|\nabla(\cdot)\|_i$ est une norme équivalente à la norme $\|\cdot\|_{H^1(\Omega_i)}$ d'après l'inégalité de Poincaré.

Definition 2.4 (solution faible). Soit $u \in L^2(0,T;V(\mathcal{O}))$ telle que $\frac{\partial u}{\partial t} \in L^2(0,T;V'(\mathcal{O}))$. On dit que u est une solution faible de (29) si elle vérifie :

$$\frac{d}{dt}(u(t),v)_{L^{2}(\mathcal{O})} + \frac{1}{2}\int_{\mathcal{O}}\left((\mathbf{b}\cdot\nabla u)v - \mathbf{b}\cdot\nabla v)u\right)dx + \nu\int_{\mathcal{O}}\nabla u\cdot\nabla vdx + \int_{\Gamma}\alpha uvd\sigma = \int_{\mathcal{O}}fvdx + \int_{\Gamma}gvd\sigma, \,\forall v\in V, \\ u(0) = u_{0}.$$

Théorème 2.5. Si $\mathbf{b} \in (L^{\infty}(\mathcal{O}))^2$, $f \in L^2(\mathcal{O} \times]0, T[)$, et $g \in L^2(\Gamma \times]0, T[)$, alors le problème (29) a une unique solution faible u dans $L^2(0,T;V(\mathcal{O})) \cap \mathcal{C}^0(0,T;L^2(\mathcal{O}))$.

Démonstration. Ce théorème est montré dans [8], on l'admet ici.

Théorème 2.6. Si $g_i^0 \in L^2(\Gamma \times [0, T[))$, pour i = 1, 2, alors l'algorithme 2 est bien défini.

Démonstration. D'après le Théorème 2.5, il suffit de montrer que $g_i^k \in L^2(\Gamma)$, pour i = 1, 2 pour tout $k \ge 0$. On procède par récurrence sur k, en utilisant (28) (comme à la section (1)). \square

$\mathbf{2.2}$ Convergence de l'algorithme de Schwarz

Théorème 2.7. On suppose que $f \in L^2(\Omega_i \times]0, T[)$ et $\alpha_1 = \alpha_2 = \alpha > 0$ et $g_i^0 \in L^2(\Gamma \times]0, T[)$. Alors la suite $(u_i^k)_{k \in \mathbb{N}}$ de solutions de (26) converge vers la solution u du probleme (24) dans $L^2(0,T;H_0^1(\Omega_i))$.

On utilise la même méthode de l'estimation de l'énergie que dans le cas 1.2. Soit $k \in \mathbb{N}^*$ et $i \in [\![1,2]\!]$. Posons $u = u_i^k$, $g = g_i^k$, $\alpha = \alpha_i > 0$. Introduisons l'erreur à l'itération $k : e_i^k = u_i^k - u$, où u_i^k est la solution de (26) et u la solution de (24). Les équations dans (26) et dans (24) étant linéaires par rapport à u_i^k et à u respectivement, alors e_i^k vérifie le problème :

$$\partial_t e_i^k + \nabla \cdot (\mathbf{b} e_i^k) - \nu \Delta e_i^k = 0 \qquad \text{dans } \Omega_i \times]0, T[, \qquad (31a)$$

$$e_i^k(\cdot, 0) = 0 \qquad \text{dans } \Omega, \qquad (31b)$$
$$e_i^k = 0 \qquad \text{sur } (\partial \Omega_i \cap \partial \Omega) \times]0, T[, \qquad (31c)$$

$$\operatorname{sur} \left(\partial \Omega_i \cap \partial \Omega\right) \times \left[0, T\right], \tag{31c}$$

$$\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k + \alpha e_i^k = \nu \partial_{\mathbf{n}_i} e_j^{k-1} - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_j^{k-1} + \alpha e_j^{k-1} \qquad \text{sur } \Gamma \times]0, T[\qquad (31d)$$

L'équation (31d) est obtenue en utilisant la linéarité des opérateurs ainsi que la mise à jour de la condition de Robin (27).

Soit i = 1 ou i = 2. On note $\|\cdot\|_i = \|\cdot\|_{L^2(\Omega_i)}$ et $(\cdot, \cdot)_i = (\cdot, \cdot)_{L^2(\Omega_i)}$. On multiplie l'équation (31a) par e_i^k puis on intègre sur Ω_i , on utilise la formule de Green (comme dans la Section 1.1.1), et on utilise que $e_i^k = 0$ sur $(\partial \Omega_i \cap \partial \Omega) \times]0, T[:$

$$\int_{\Omega_i} (\partial_t e_i^k) e_i^k dx + \nu \|\nabla e_i^k\|_i^2 - \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k\right) e_i^k d\sigma = 0.$$
(32)

Mais $\int_{\Omega_{i}} (\partial_{t} e_{i}^{k}) e_{i}^{k} dx = \int_{\Omega_{i}} \frac{1}{2} \partial_{t} ((e_{i}^{k})^{2}) = \frac{1}{2} \frac{d}{dt} \|e_{i}^{k}(t)\|_{i}^{2}$ voir [2] page 116, donc :

$$\frac{1}{2}\frac{d}{dt}\|e_{i}^{k}(t)\|_{i}^{2}+\nu\|\nabla e_{i}^{k}\|_{i}^{2}-\int_{\Gamma}\left(\nu\partial_{\mathbf{n}_{i}}e_{i}^{k}-\frac{\mathbf{b}\cdot\mathbf{n}_{i}}{2}e_{i}^{k}\right)e_{i}^{k}d\sigma=0.$$
(33)

Ensuite, pour pouvoir utiliser la condition de transmission, on écrit :

$$\left(\nu\partial_{\mathbf{n}_{i}}e_{i}^{k}-\frac{\mathbf{b}\cdot\mathbf{n}_{i}}{2}e_{i}^{k}\right)e_{i}^{k}=\frac{1}{4\alpha_{i}}\left(\left(\nu\partial_{\mathbf{n}_{i}}e_{i}^{k}-\frac{\mathbf{b}\cdot\mathbf{n}_{i}}{2}e_{i}^{k}+\alpha_{i}e_{i}^{k}\right)^{2}-\left(\nu\partial_{\mathbf{n}_{i}}e_{i}^{k}-\frac{\mathbf{b}\cdot\mathbf{n}_{i}}{2}e_{i}^{k}-\alpha_{i}e_{i}^{k}\right)^{2}\right).$$
(34)

En remplaçant (34) dans (33), on obtient :

$$\frac{1}{2}\frac{d}{dt}\|e_i^k(t)\|_i^2 + \nu\|\nabla e_i^k\|_i^2 + \frac{1}{4\alpha_i}\int_{\Gamma}\left(\nu\partial_{\mathbf{n}_i}e_i^k - \frac{\mathbf{b}\cdot\mathbf{n}_i}{2}e_i^k - \alpha_ie_i^k\right)^2 d\sigma = \frac{1}{4\alpha_i}\int_{\Gamma}\left(\nu\partial_{\mathbf{n}_i}e_i^k - \frac{\mathbf{b}\cdot\mathbf{n}_i}{2}e_i^k + \alpha_ie_i^k\right)^2 d\sigma.$$

En intégrant par rapport au temps, entre 0 et t, on a :

$$\frac{1}{2} \|e_i^k(t)\|_i^2 - \frac{1}{2} \|e_i^k(0)\|_i^2 + \nu \int_0^t \|\nabla e_i^k(s)\|_i^2 ds + \frac{1}{4\alpha_i} \int_0^t \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k - \alpha_i e_i^k\right)^2 d\sigma = \frac{1}{4\alpha_i} \int_0^t \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k + \alpha_i e_i^k\right)^2 d\sigma.$$

Mais d'après (31b), on a $||e_i^k(0)||_i^2 = 0$, donc finalement :

$$\frac{1}{2} \|e_i^k(t)\|_i^2 + \nu \int_0^t \|\nabla e_i^k(s)\|_i^2 ds + \frac{1}{4\alpha_i} \int_0^t \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k - \alpha_i e_i^k\right)^2 d\sigma = \frac{1}{4\alpha_i} \int_0^t \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k + \alpha_i e_i^k\right)^2 d\sigma.$$
(35)

On utilise maintenant la condition de transmission (31d) dans le membre de droite de (35) et on a, avec i=1,2, j=3-i :

$$\frac{1}{2} \|e_i^k(t)\|_i^2 + \nu \int_0^t \|\nabla e_i^k(s)\|_i^2 ds + \frac{1}{4\alpha_i} \int_0^t \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k - \alpha_i e_i^k\right)^2 d\sigma = \frac{1}{4\alpha_i} \int_0^t \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_i} e_j^{k-1} - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_j^{k-1} + \alpha_i e_j^{k-1}\right)^2 d\sigma$$

En utilisant que $\mathbf{n}_i = -\mathbf{n}_j$ le terme de droite sous l'intégrale se réécrit sous la forme

$$\left(\nu\partial_{\mathbf{n}_{i}}e_{i}^{k}-\frac{\mathbf{b}\cdot\mathbf{n}_{i}}{2}e_{i}^{k}+\alpha_{i}e_{i}^{k}\right)^{2}=\left(-\nu\partial_{\mathbf{n}_{j}}e_{j}^{k-1}+\frac{\mathbf{b}\cdot\mathbf{n}_{j}}{2}e_{j}^{k-1}+\alpha_{i}e_{j}^{k-1}\right)^{2}=\left(\nu\partial_{\mathbf{n}_{j}}e_{j}^{k-1}-\frac{\mathbf{b}\cdot\mathbf{n}_{j}}{2}e_{j}^{k-1}-\alpha_{i}e_{j}^{k-1}\right)^{2}.$$

Ainsi on a, pour i = 1, 2 et j = 3 - i, en faisant l'hypothèse que $\alpha_i = \alpha_j = \alpha > 0$:

$$\frac{1}{2} \|e_i^k(t)\|_i^2 + \nu \int_0^t \|\nabla e_i^k(s)\|_i^2 ds + \frac{1}{4\alpha} \int_0^t \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k - \alpha e_i^k\right)^2 d\sigma = \frac{1}{4\alpha} \int_0^t \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_j} e_j^{k-1} - \frac{\mathbf{b} \cdot \mathbf{n}_j}{2} e_j^{k-1} - \alpha e_j^{k-1}\right)^2 d\sigma$$
(36)

Posons

$$B_k(t) := \frac{1}{4\alpha} \sum_{i=1}^2 \int_0^t \int_{\Gamma} \left(\nu \partial_{\mathbf{n}_i} e_i^k - \frac{\mathbf{b} \cdot \mathbf{n}_i}{2} e_i^k - \alpha e_i^k \right)^2.$$

En sommant l'équation (36) sur i (avec j = 3 - i), on obtient, pour $k \ge 1$:

$$\sum_{i=1}^{2} \frac{1}{2} \|e_i^k(t)\|_i^2 + \nu \sum_{i=1}^{2} \int_0^t \|\nabla e_i^k(s)\|_i^2 ds + B_k(t) = B_{k-1}(t).$$

On somme ensuite sur les itérations k :

$$\frac{1}{2}\sum_{k=1}^{K}\sum_{i=1}^{2}\|e_{i}^{k}(t)\|_{i}^{2}+\nu\sum_{k=1}^{K}\sum_{i=1}^{2}\int_{0}^{t}\|\nabla e_{i}^{k}(s)\|_{i}^{2}ds+\sum_{k=1}^{K}B_{k}(t)=\sum_{k=1}^{K}B_{k-1}(t),$$

ce qui équivaut, en simplifiant les termes, à

$$\frac{1}{2}\sum_{k=1}^{K}\sum_{i=1}^{2}\|e_{i}^{k}(t)\|_{i}^{2}+\nu\sum_{k=1}^{K}\sum_{i=1}^{2}\int_{0}^{t}\|\nabla e_{i}^{k}(s)\|_{i}^{2}ds+B_{K}(t)=B_{0}(t)$$

Comme $B_K(t) \ge 0$, on a donc

$$\sum_{k=1}^{K} \sum_{i=1}^{2} \|e_i^k(t)\|_i^2 + 2\nu \sum_{k=1}^{K} \sum_{i=1}^{2} \int_0^t \|\nabla e_i^k(s)\|_i^2 ds \leq 2B_0(t).$$

Comme l'expression ci-dessus est valable $\forall t \in [0; T]$, on peut donc écrire :

$$\sum_{k=1}^{K} \sum_{i=1}^{2} \|e_i^k(T)\|_i^2 + 2\nu \sum_{k=1}^{K} \sum_{i=1}^{2} \int_0^T \|\nabla e_i^k(s)\|_i^2 ds \leq 2B_0(T)$$

On fait maintenant tendre K vers $+\infty$, ce qui entraı̂ne que la série $\sum_{k=1}^{+\infty} \sum_{i=1}^{2} \int_{0}^{T} \|\nabla e_{i}^{k}(s)\|_{i}^{2} ds$ est convergente. Par conséquent son terme général tend vers zéro, c'est-à-dire :

$$\lim_{k \to +\infty} \int_0^T \|\nabla e_i^k(s)\|_i ds = 0, \quad \text{pour } i = 1, 2,$$

ce qui signifie que u_i^k converge vers u dans $L^2(0,T; H_0^1(\Omega_i))$.

3 Discrétisation des problèmes global et local d'advection-diffusion dépendant du temps

3.1 Discréatisation en temps du problème global

Soit Ω un ouvert borné de \mathbb{R}^2 , régulier (ou polygone convexe). Dans cette partie, on cherche à discrétiser le problème d'advection-diffusion (24).

Soit [0, T] notre intervalle de temps sur lequel on souhaite discrétiser notre problème. Soit $N \in \mathbb{N}$ et soit δT tel que $\delta T := \frac{T}{N}$. Ainsi, on construit la suite $(t_n)_{0 \le n \le N}$ telle que $\forall \in [0, N], t_n = n\delta T$ et $[0, T] = \bigcup_{n=0}^{N-1} [t_n; t_{n+1}]$.

Par ailleurs, en considérant u définie comme la solution du problème (24), on a que $u(., t+\delta T) = u(., t) + \delta T \partial_t (u(., t)) + \mathcal{O}(\delta T)$ $\forall t \in [0, T]$, par Taylor-Lagrange à l'ordre 1. Et en posant $w^n := u(., t_n)$, on a :

$$\partial_t(u(.,t_n)) = \frac{w^{n+1} - w^n}{\delta T} + \mathcal{O}(\delta T) \quad \forall n \in [[0, N-1]]$$

Enfin, en supposant $\mathbf{b} \in (L^{\infty}(\Omega))^2$, $f \in L^2(\Omega \times]0, T[)$, on peut approcher une solution de (24) à t_n , u^n tel que :

$$\frac{u^{n+1}}{\delta T} + \mathbf{b}\nabla u^{n+1} - \nu\Delta u^{n+1} = f^{n+1} + \frac{u^n}{\delta T} \quad \forall n \in [\![0, N-1]\!] \tag{37}$$

$$u = u_0 \quad \text{dans } \Omega \tag{38}$$

 $u^{n+1} = 0 \quad \text{sur } \partial\Omega \tag{39}$

avec $f^n := f(., t_n) \quad \forall n \in [0, N]$. Notons que le problème est bien posé (cf théorème 1.3 avec $c = \frac{1}{\delta T}$).

Pour $n \in [0, N-1]$ fixé, on a la formulation variationnelle semi-discrète suivante : Trouver u^n dans $H_0^1(\Omega)$ tel que

$$a(u^{n+1}, v) = l_n(v) \quad \forall v \in H_0^1(\Omega)$$

$$\tag{40}$$

avec
$$a(u^{n+1}, v) = \frac{1}{\delta T} \int_{\Omega} u^{n+1} v dx + \frac{1}{2} \int_{\Omega} \left((\mathbf{b} \cdot \nabla u^{n+1}) v - \mathbf{b} \cdot \nabla v \right) u^{n+1} dx + \nu \int_{\Omega} \nabla u^{n+1} \cdot \nabla v dx$$
 (41)

et
$$l_n(v) = \int_{\Omega} f^{n+1} v dx + \frac{1}{\delta T} \int_{\Omega} u^n v dx$$
 (42)

avec
$$l_0(v) = \int_{\Omega} f v dx + \frac{1}{\delta T} \int_{\Omega} u_0 v dx$$
 (43)

3.2 Elements finis non conformes pour le problème global

Pour la discrétisation en espace, nous allons utiliser une approximation non conforme, le schéma de Crouzeix Raviart qui est étudié dans [3]. L'avantage des schémas non conformes est qu'ils sont plus stables et permettent de gérer les problèmes de discontinuité.

On définit une triangulation régulière τ_h de Ω , et on note :

- $\diamond\ \Gamma_h:=$ l'ensemble des arêtes de τ_h
- $\diamond \ \Gamma_{0h} := \{ e \in \Gamma_h; e \text{ se trouve sur } \partial \Omega \}$

Cela nous permet de définir l'espace des éléments finis non conformes suivant :

- $\diamond V_h := \{ v_h \in L^2(\Omega); v_{h|T} \in \mathbb{P}_1(T), \forall T \in \tau_h; v_h \text{ continu au milieu de l'arête, } e \quad \forall e \in \Gamma_h \}$
- $\diamond \ V_{0h} := \{ v_h \in V_h; v_h = 0 \text{ au milieu de l'arête } e \quad \forall e \in \Gamma_{0h} \}$

Le problème avec les éléments finis non conformes est que $V_h \notin H_0^1(\Omega)$, de ce fait ∇u et ∇v ne sont a priori pas définis partout dans Ω , mais uniquement sur chaque élément $T \in \tau_h$. On utilisera donc à la place de "a", la forme bilinéaire " a_h " suivante :

$$a_h(u_h, v_h) = \frac{1}{\delta T} \int_{\Omega} u_h v_h dx + \frac{1}{2} \sum_{T \in \tau_h} \int_{T} \left((\mathbf{b} \cdot \nabla u_h) v_h - \mathbf{b} \cdot \nabla v_h) u_h \right) dx + \nu \sum_{T \in \tau_h} \int_{T} \nabla u_h \cdot \nabla v_h dx \tag{44}$$

On trouve donc pour $n \in [0, N-1]$ fixé, la formulation variationnelle discrète suivante :

Trouver
$$u_h^{n+1} \in V_{0h}$$
 tel que : $a_h(u_h^{n+1}, v_h) = l_n(v_h) \quad \forall v_h \in V_{0h}, \quad \forall n \in [\![0, N-1]\!]$ (45)

Remarque 3.1. À ce stade et grâce à [1] et à [3], on peut conclure que notre schéma nous permet d'aboutir à une solution approchée u_h de u telle que : $u_h = u + O(\delta T) + O(h^2)$ où h est le pas de notre maillage.

3.3 Discréatisation en temps du problème local

Soit $\mathcal{O} = \Omega_i, i = 1, 2$ un ouvert borné de \mathbb{R}^2 , régulier (ou polygone convexe) et **n** la normale sortante de cet ouvert. Dans cette partie, on cherche à discrétiser le problème local d'advection-diffusion (29). On raisonne de la même façon que dans la section 3.1. Soit [0, T] notre intervalle de temps sur lequel on souhaite discrétiser notre problème. Soit $N \in \mathbb{N}$ et soit δT tel que $\delta T := \frac{T}{N}$. Ainsi, on construit la suite $(t_n)_{0 \le n \le N}$ telle que $t_n = n\delta T$, $\forall \in [0, N]$ et $[0, T] = \bigcup_{n=0}^{N-1} [t_n; t_{n+1}]$.

Enfin, en supposant $\mathbf{b} \in (L^{\infty}(\mathcal{O}))^2$, $f \in L^2(\mathcal{O} \times]0, T[$) et $g \in L^2(\Gamma \times]0, T[$), on a alors que l'on peut approcher une solution de (29) à t fixé par u^n tel que :

$$\frac{u^{n+1}}{\delta T} + \nabla \cdot (\mathbf{b}u^{n+1}) - \nu \Delta u^{n+1} = f^{n+1} + \frac{u^n}{\delta T} \quad \forall n \in [[0, N-1]], \qquad (46a)$$
$$u^0 = u_0 \qquad \text{dans } \mathcal{O}, \qquad (46b)$$

$$u^{0} = u_{0} \qquad \qquad \text{dans } \mathcal{O}, \qquad (46b)$$

$$u^{a+b} = 0 \qquad \qquad \text{sur } (\partial O \cap \partial \Omega), \tag{4bc}$$

$$\nu \partial_{\mathbf{n}} u^{n+1} - \frac{\mathbf{b} \cdot \mathbf{n}}{2} u^{n+1} + \alpha u^{n+1} = g^{n+1} \qquad \text{sur } \Gamma$$
(46d)

avec $f^n := f(., t_n) \quad \forall n \in [\![0, N]\!]$, et $g^n := g(., t_n) \quad \forall n \in [\![0, N]\!]$. Notons que le problème est bien posé (cf théorème 1.8 avec $c = \frac{1}{\delta T}$).

On obtient donc la formulation variationnelle semi-discrète suivante : Trouver u^n dans $V(\mathcal{O})$ tel que

$$a^{R}(u^{n+1}, v) = l_{n}^{R}(v) \quad \forall v \in V(\mathcal{O}) \quad (47)$$

avec
$$a^{R}(u^{n+1},v) = \frac{1}{\delta T} \int_{\mathcal{O}} u^{n+1} v dx + \frac{1}{2} \int_{\mathcal{O}} \left((\mathbf{b} \cdot \nabla u^{n+1}) v - \mathbf{b} \cdot \nabla v \right) u^{n+1} dx + \nu \int_{\mathcal{O}} \nabla u^{n+1} \cdot \nabla v dx + \alpha \int_{\Gamma} u^{n+1} v dx$$
(48)

et
$$l_n^R(v) = \int_{\mathcal{O}} f^{n+1}v dx + \frac{1}{\delta T} \int_{\mathcal{O}} u^n v dx + \int_{\Gamma} g^{n+1}v dx$$
 (49)

avec
$$l_0^R(v) = \int_{\mathcal{O}} fv dx + \frac{1}{\delta T} \int_{\mathcal{O}} u_0 v dx + \int_{\Gamma} gv dx$$
 (50)

3.4Elements finis non conformes pour le problème local

On réutilise dans les sous-domaines, le même schéma que dans la section 3.2. Nous sommes confrontés au même problème de définition des termes ∇u_h et ∇v_h sur \mathcal{O} auquel s'ajoute un problème de définition de la trace de u_h sur Γ . Cependant, on peut définir la trace de u_h localement sur chaque arête de Γ , car u_h est \mathbb{P}_1 sur chaque triangle T. Ainsi on utilisera, pour un temps fixé, la forme bilinéaire suivante sur V_h :

$$a_{h}^{R}(u_{h},v_{h}) = \frac{1}{\delta T} \int_{\mathcal{O}} u_{h}v_{h}dx + \frac{1}{2} \sum_{T \in \tau_{h}} \int_{T} \left((\mathbf{b} \cdot \nabla u_{h})v_{h} - \mathbf{b} \cdot \nabla v_{h})u_{h} \right) dx + \nu \sum_{T \in \tau_{h}} \int_{T} \nabla u_{h} \cdot \nabla v_{h}dx + \alpha \sum_{E \in \Gamma} \int_{E} u_{h}v_{h}dx$$

$$\tag{51}$$

On trouve la formulation variationnelle discrète suivante :

Trouver
$$u_h^{n+1} \in V_{0h}$$
 tel que, $a_h^R(u_h^{n+1}, v_h) = l_n^R(v_h) \quad \forall v_h \in V_{0h}, \quad \forall n \in \llbracket 0, N-1 \rrbracket$ (52)

Remarque 3.2. À la différence du schéma sur le problème global, nous n'avons pas de source nous donnant l'ordre de l'erreur de la solution approchée, fournie par notre schéma, sur la solution réelle du problème, dans le cas d'une condition de Robin. Cependant, nous faisons encore l'hypothèse que notre schéma nous permet d'aboutir à une solution approchée u_h de u telle que : $u_h = u + \mathcal{O}(\delta T) + \mathcal{O}(h^2)$ où h est le pas de notre maillage. C'est ce que nous allons tenter de valider numériquement.

3.5Écriture du système linéaire

Pour les éléments finis non conformes nous allons définir une base V_{0h} formés des fonctions élémentaires suivantes : $(\psi_j)_{1 \leq j \leq P}$ telle que :

Les points $(x_j)_{1 \leq j \leq P}$ sont les milieux des arêtes des triangles et $\psi_j(x_i) = 1$ si i = j, 0 si $i \neq j$, et soit \mathbb{P}_1 par morceaux dans V_{0h} .

Maintenant, on souhaite se ramener à un système linéaire. On a $u_h \in V_{0h}$ et $\{\psi_j\}_{1 \leq j \leq P}$ base de V_{0h} donc $u_h^{n+1} =$

 $\sum_{j=1}^{l} U_j^{n+1} \psi_j \text{ donc pour } v_h = \psi_i \text{ on a }:$

$$a_h(u_h^{n+1},\psi_i) = l_n(\psi_i) \quad \forall i \in \llbracket 1, P \rrbracket$$
(53)

avec
$$a_h(\sum_{j=1}^P U_j^{n+1}\psi_j, \psi_i) = \sum_{j=1}^P U_j^{n+1}a_h(\psi_j, \psi_i)$$
 (54)

Donc la formulation variationnelle discrète se réecrit sous la forme suivante :

$$\sum_{j=1}^{P} U_{j}^{n+1} a_{h}(\psi_{j}, \psi_{i}) = l_{n}(\psi_{i}) \quad \forall i \in [\![1, P]\!]$$
(55)

On pose $\mathbb{A}_{i,j} = a_h(\psi_j, \psi_i)$ et $k_i = l_n(\psi_i)$. On se retrouve donc avec le système linéaire suivant ;

$$U = k \tag{56}$$

 $\mathbb{A} \in \mathbb{M}_P(\mathbb{R}) \text{ tel que } (\mathbb{A})_{i,j} = \mathbb{A}_{i,j} \text{ et } k \in \mathbb{R}^P.$ (57)

A

4 Résultats numériques

Dans cette partie, nous présentons quelques résultats numériques pour illustrer les résultats théoriques des précédentes sections (dans le cas instationnaire), et montrer l'influence du paramètre de Robin sur la convergence de la méthode DD. On présente aussi deux simulations plus "réalistes" avec différentes vitesses d'advection.

L'implémentation de la méthode a été faite en Freefem++, à partir d'un code résolvant l'équation de la chaleur, avec deux sous-domaines, fourni par Mme Japhet. Après avoir fait varier les paramètres du code de diffusion, pour bien le maîtriser, nous avons étendu ce code au problème d'advection-diffusion, et réalisé différents tests (dont certains sont présentés ci-dessous) de façon à vérifier : 1) le solveur dans un sous-domaine; 2) les transferts au niveau des interfaces. Pour le point 1) nous avons regardé l'ordre du schéma (bien que nous n'ayons pas trouvé d'analyse du schéma pour l'équation d'advection-diffusion avec Robin, on a essayé de voir si l'on retrouve l'ordre théorique du schéma vu dans la section précédente). Pour 2), on a vérifié de deux façons : (a) en initialisant l'algorithme sur l'interface par l'opérateur de Robin appliqué à la solution exacte. Dans ce cas dès les premières itérations, l'erreur entre la solution DD et la solution exacte est l'erreur du schéma ; (b) en initialisant l'algorithme sur l'interface par des valeurs aléatoires entre 0 et 1, et en vérifiant que l'erreur, entre les solutions DD et monodomaine, tend vers environ 10^{-16} (la précision machine).

Le critère d'arrêt est le nombre d'itérations de DD. Un autre critère serait d'imposer que les sauts des quantités de Robin sur l'interface soit plus petit qu'une tolérance fixée. Les erreurs relatives sont calculées dans la norme $L^{\infty}(0,T;L^{2}(\Omega))$. Le domaine global est $\Omega =]0,1[\times]0,1[$.

On considère deux types de vitesse d'advection : une vitesse tournante (voir Figure 3 à gauche), donnée par :

$$\mathbf{b} = \left(-\sin\left(\pi(y-\frac{1}{2})\right)\cos\left(\pi(x-\frac{1}{2})\right), \cos\left(\pi(y-\frac{1}{2})\right)\sin\left(\pi(x-\frac{1}{2})\right)\right),\tag{58}$$

et une vitesse de tourbillon en partant d'une gaussienne (voir Figure 3 à droite), obtenue sur [4] :

$$\mathbf{b} = \left(-(4y-2)/(2\pi((4x-2)^2 + (4y-2)^2 + 0.05)), (4x-2)/(2\pi((4x-2)^2 + (4y-2)^2 + 0.05)))\right)$$
(59)

FIGURE 3: Vitesse tournante (à gauche), vitesse courbe (à droite)

4.1 Validation du solveur monodomaine et de celui de Robin dans un sous-domaine

Dans cette section nous souhaitons vérifier l'erreur du schéma (en temps et en espace). Pour cela on va choisir les données de sorte que l'on connait la solution exacte (afin de calculer l'erreur entre les solutions DD convergée et exacte). On considèrera ci-dessous $\nu = 0.1$ et la vitesse tournante **b** définie par (58), et deux cas de solution exacte. Le temps final est T = 1. Le paramètre de Robin est fixé à $\alpha_1 = \alpha_2 = \alpha = 1.1$ (il correspond à une valeur proche de la valeur optimale, voir la section 4.2).

L'interface est $\Gamma = \{0.6\} \times]0, 1[$. Nous allons regarder l'erreur pour trois maillages différents, représentés sur la Figure 4, ayant respectivement 1362, 5040, et 21210 triangles.

FIGURE 4: Différents maillages

Cas 1

Le second membre f, ainsi que les valeurs de la condition intiale u_0 et de la condition de Dirichlet u_D (sur le bord de Ω) sont choisis tels que la solution exacte du problème (24) est

$$u(\mathbf{x},t) = \cos(\pi y)\sin(\pi x)\cos(2\pi t), \quad \forall \mathbf{x} = (x,y) \in \Omega, \ \forall t \in (0,T).$$
(60)

Sur la table 1 à gauche, les valeurs de h (pratiquement) et de δT initiales sont divisées par 2, puis par 4, et l'on observe bien une erreur divisée par 2 à chaque raffinement, qui correspond à $\mathcal{O}(\delta T)$. Sur la table 2 à gauche, la valeur de hest divisée par 2, puis par 4, et la valeur de δT est divisée par 4, puis par 8 (de sorte que δT est proportionnel à h^2). On observe alors une erreur divisée par 4 à chaque raffinement, qui correspond à $\mathcal{O}(h^2)$. Cela correspond aux ordres théoriques de la section précédente.

h	0.06346	0.03284	0.01581	h	0.06346	0.03284	0.01581
δT	0.0625	0.03125	0.015625	δT	0.0625	0.015625	0.00390625
erreur relative	0.126785	0.066097	0.0338225	erreur relative	0.126785	0.03382	0.00862167

TABLE 1: Cas 1 (monodomaine) : erreur relative (entre les solutions DD et exacte) en fonction de h et de δT , pour observer $\mathcal{O}(\delta T)$ (à gauche) et $\mathcal{O}(h^2)$ (à droite)

Sur la table 2 on regarde l'évolution de l'erreur pour le problème de Robin dans un sous-domaine en raffinant les maillages en espace et temps de la même façon que pour le cas monodomaine. On observe à nouveau un ordre en $\mathcal{O}(\delta T) + \mathcal{O}(h^2)$ (bien que l'on ai pas trouvé de résultat théorique pour ce schéma avec Robin).

h	0.06346	0.03284	0.01581	h	0.06346	0.03284	0.01581
δT	0.0625	0.03125	0.015625	δT	0.0625	0.015625	0.00390625
err. relative (Ω_1)	0.128749	0.0671048	0.034396	err. relative (Ω_1)	0.128749	0.0344072	0.00875966
err. relative (Ω_2)	0.124736	0.0650466	0.0332845	err. relative (Ω_2)	0.124736	0.0332849	0.00845237

TABLE 2: Cas 1 (sous-domaine avec Robin) : Erreur relative (entre les solutions DD et exacte) en fonction de h et de δT , pour observer $\mathcal{O}(\delta T)$ (à gauche) et $\mathcal{O}(h^2)$ (à droite)

Cas 2

Les données f, u_0 et u_D sont choisis tels que la solution exacte du problème (24) est

$$u(\mathbf{x},t) = (t^2 + 1)\cos(\pi y)\sin(\pi x), \quad \forall \mathbf{x} = (x,y) \in \Omega, \ \forall t \in (0,T).$$

$$(61)$$

Sur la table 3 à gauche, on représente les valeurs de l'erreur pour le problème de Robin dans un sous-domaine en raffinant les maillages comme dans les cas précédents. On observe à nouveau un ordre en $\mathcal{O}(\delta T) + \mathcal{O}(h^2)$ (on a affiché le maximum de l'erreur sur les deux sus-domaines).

h	0.06346	0.03284	0.01581	h	0.06346	0.03284	0.01581
δT	0.0625	0.03125	0.015625	δT	0.0625	0.015625	0.00390625
erreur relative	0.005668	0.002638	0.001297	erreur relative	0.005668	0.001395	0.000335

TABLE 3: Cas 2 (sous-domaine avec Robin) : Erreur relative (entre les solutions DD et exacte) en fonction de h et de δT , pour observer $\mathcal{O}(\delta T)$ (à gauche) et $\mathcal{O}(h^2)$ (à droite)

4.2 Validation des conditions de transmission

On considère les mêmes données que dans le cas 2 de la section précédente, avec le maillage de gauche sur la Figure 4, et $\delta T = 0.0625$. Sur la table 4, on initialise l'algorithme sur l'interface en prenant les opérateurs de Robin (de chaque sous-domaines) appliqués à la solution exacte, c'est-à-dire $g_1^0 = (\nu \partial_x - \frac{b_x}{2} + \alpha)u$ et $g_1^0 = (-\nu \partial_x + \frac{b_x}{2} + \alpha)u$. Dans ce cas, on observe que l'erreur du schéma est atteinte dès les premières itérations (i.e. l'erreur entre la solution DD et la solution exacte a atteint l'erreur du schéma).

Sur la table 5, on initialise l'algorithme sur l'interface par des valeurs aléatoires entre 0 et 1. On observe que l'erreur, entre les solutions DD et monodomaine, tend vers environ 10^{-16} (i.e. la précision machine) au bout de 29 itérations, et donc que la solution DD converge vers la solution monodomaine (aux erreurs d'arrondis près).

Itération	1	3	20
Erreur relative $(u_{\rm DD} - u) _{\Omega_1}$	0.00415	0.00505	0.00507
Erreur relative $(u_{\rm DD} - u) _{\Omega_2}$	0.00349	0.00550	0.00567

TABLE 4: Erreur relative au cours des itérations, entre les solutions DD et exacte

Itération	1	2	5	29
Erreur relative $(u_{\rm DD} - u_{\rm mono}) _{\Omega_1}$	0.00132	0.00066	5.66e-05	7.64e-16
Erreur relative $(u_{\rm DD} - u_{\rm mono}) _{\Omega_2}$	0.00289	0.00104	5.36e-05	6.36e-16

TABLE 5: Erreur relative au cours des itérations, entre les solutions DD et monodomaine

Nous avons également regardé la convergence dans le cas 1 de la section précédente, et l'on trouve une erreur de $9.20522.10^{-16}$ dans Ω_1 , et $8.14136.10^{-16}$ dans Ω_2 après 59 itérations.

4.3 Solution DD au cours des itérations, pour différents paramètres de Robin

Dans cette partie, nous illustrons par différents tests l'influence du paramètre de Robin sur la convergence de la méthode DD. Nous reprenons à nouveau les mêmes données et maillage que dans la section 4.2. Nous considérons un seul paramètre $\alpha_1 = \alpha_2 = \alpha$. L'algorithme est initialisé en prenant, pour les valeurs de Robin sur l'interface, des valeurs aléatoires comprises entre 0 et 1. A convergence on s'attend à avoir $u_1 = u_2$ sur l'interface ainsi que l'égalité des flux (qui sont des conditions vérifiées par la solution du problème continu).

Sur les Figures 5, 6 et 7, on considère respectivement trois valeurs du paramètre de Robin : $\alpha = 0.1$, $\alpha = 1$ et $\alpha = 10$. Pour chaque valeur, on représente la solution au temps final T, pour les 4 premières itérations de DD. On observe que pour $\alpha = 1$, après 4 itérations, la solution DD (et sa dérivée en x) est pratiquement continue à l'interface, visuellement. En revanche $\alpha = 0.1$ et $\alpha = 10$, la solution DD (et sa dérivée en x) ne se raccorde pas au niveau de l'interface après 4 itérations. Ceci signifie qu'il faut plus d'itérations (donc que la convergence est plus lente) pour obtenir une solution continue visuellement.

Pour affiner la recherche du meilleur α , sur la table 6 on montre l'erreur après 6 itérations (entre les solutions DD et monodomaine) en fonction de α , toujours en partant de valeurs aléatoires sur l'interface, pour des valeurs proches de la valeur $\alpha = 1$. On trouve alors une valeur optimale autour de 1.1.

α	0.5	0.9	1.1	1.3	1.7	2
Erreur relative $(u_{\rm DD} - u_{\rm mono}) _{\Omega_1}$	0.00291	0.00068	0.00041	0.00102	0.00441	0.00705
Erreur relative $(u_{\rm DD} - u_{\rm mono}) _{\Omega_2}$	0.00312	0.00081	0.00045	0.00025	0.00121	0.00279

TABLE 6: Erreur relative au cours des itérations de DD entre les solutions DD et monodomaine

FIGURE 5: Evolution de la solution DD au cours des 4 premières itérations, avec $\alpha = 0.1$

FIGURE 6: Evolution de la solution DD au cours des 4 premières itérations, avec $\alpha = 1$.

FIGURE 7: Evolution de la solution DD au cours des 4 premières itérations, avec $\alpha = 10$

4.4 Cas test "réaliste" 1

Dans cette section on souhaite faire un cas plus "réaliste" (ou plus "physique") pour lequel on ne connait pas la solution exacte. On prend une interface horizontale $\Gamma = \{y = 0.4\} \times]0, T[$ (voir la Figure 8 en haut). Le maillage a 21110 triangles, avec un pas h = 0.0162581 et le pas de temps est $\delta T = 0.015625$.

On choisit comme champ de vitesse la vitesse tournante (58). Le paramètre de diffusion est $\nu = 0.005$, le second membre est f = 0, la condition initiale est $u_0(x, y) = 1 - y$ et la condition de Dirichlet u_D (sur le bord de Ω) vaut 1 en y = 0 et zéro sur les autres bords de Ω , on aura ainsi une zone près de l'axe y = 0 où la solution varie rapidement.

Observations sur la figure 9

On observe que l'advection prend le pas sur la diffusion et la rotation de l'advection se fait bien dans le même sens que le champ de vitesse (58). On note aussi que les bords initialisés comme nuls restent nuls. On remarque aussi que, sur le bord choisi avec une condition de Dirichlet fixée à 1, il y a formation d'une couche limite (i.e. une zone très mince où la solution varie très rapidement).

Interprétations sur la figure 9

Le fait que notre solution, au cours du temps, soit très influencée par le champ de vitesse et peu influencée par la diffusion vient du fait que l'on a choisi $\nu = 0.005$ donc très faible. La création de la couche limite sur le bord du bas provient aussi de la fort influence de la vitesse **b**.

4.5 Cas test "réaliste" 2

Dans cette section on prend une Gaussienne centrée en (0.8, 0.5) comme condition initiale (comme une source d'un polluant), un tourbillon pour la vitesse (voir Figure 3 droite), des conditions aux limites nulles sur le bord du domaine,

FIGURE 8: Décomposition de domaine et position de l'interface en y = 0.4 en haut et x = 0.7 en bas

 $\nu = 0.0005$ et T = 8. L'interface est en y = 0.7 (voir la Figure 8 en bas). Le maillage est celui de la figure 8 à droite, et $\delta t = 0.125$.

Observations sur la figure 10

On observe que la gaussienne tend à tourner autour du centre du tourbillon. Là encore l'advection joue un rôle important et la rotation s'effectue bien dans le même sens qu'indiqué sur le champ de vitesse de droite de la figure 3. On peut grâce à ce cas modéliser par exmeple la dispersion d'un polluant dans un fluide. La concentration du polluant suit le champ de vitesse, tout en diminuant sous l'effet de la diffusion ; notons que cette diminution n'est pas facile à voir sur les figures, du fait que la méthode d'affichage de Freefem++ change les valeurs numériques de la légende et non les couleurs elles-même.

Interprétations sur la figure 10

L'influence de l'advection s'explique là aussi par la faible valeur de ν que nous avons choisi. Le fait que la gaussienne vient se recentrer autour du tourbillon s'explique aussi par le fait que les normes des vecteurs prochent du centre sont plus importantes comme le montre la figure 3.

FIGURE 9: Evolution de la solution DD au cours du temps

FIGURE 10: Evolution de la solution DD au cours du temps

Annexe

Les modifications du code ont été encadrées en rouge. On note que pour utiliser les éléments de Crouzeix-Raviart, il faut changer l'interpolation de freefem++ pour bien utiliser la méthode du point milieu sur l'interface. Sinon, puisque les éléments de Crouzeix-Raviart ne considèrent que le milieu des arêtes, on risque d'avoir des problèmes.

/	<u>.</u>
/* /* DOMAIN DECOMPOSITION FOR SOLVING TIME DEPENDENT ADVECTIONDIFFUSION PROBLEM	^, *,
/* WITH ROBIN B.C.	*/
/*	*/
/* For i=1,2:	*/
/* dui/dt + div(b*u) - nu*Delta(ui) = fi, in Omega_i x (0,T)	*/
/* ui=uD on (Sigma_i\Gamma) x (0,T)	*/
/* ui(.,0)=u0 in Omega_i	*/
/* with the Robin transmission conditions on Gamma x (0,T) :	*/
/* Grad_n1(u1).n1 + alpha_1*u1 = g1	*/
/* Grad_n2(u2).n2 + alpha_2*u2 = g2	*/
/*	*/
/* where g1 = -Grad_n2(u2).n2 + alpha_1*u2, alpha_i>0, i=1,2	*/
/* g2 = -Grad_n1(u1).n1 + alpha_2*u1	*/
/*	*/
/* and where Sigma_i is the boundary of the domain Omega_i	*/
/*	*/
/* n1 n2	*/
/* Omega_1 Omega_2 > < n1=-n2	*/
/*	*/
/*	*/
/* Gamma	*/
/*	*/
/* The problem is solved using Crouzeix-Raviart (P1nc) elements	*/
/* and implicit Euler in time	*/
/* Comparison with the exact solution	*/
/* u = cos(pi*x)*sin(pi*y)*cos(2*pi*t)	*/
/* verification that the scheme is order 2 in space and order 1 in time	*/
/* for monodomain and for each subdomain	*/
/* verification that the DD solution converges to the monodomain solution	*/
/* up to 1e-16	*/
/* in this code matrices are pre-computed and used instead of "solve"	*/
/* REMARK : NEED A SPECIFIC QUADRATURE ON THE INTERFACE :	*/
/* here midpoint is used to ensure that the DD solution converges to the	*/
/* monodomain solution	*/
/*	*/
/* Creation : Caroline Japhet Modification : Imad Badda et Martin Duguey	*/
/* Last modification : 20/03/21	*/
/*	*/

	<pre>/* Variables declaration */</pre>	
	<pre>int INITGUESS=2;</pre>	
	<pre>int raf=0;</pre>	
	real nu = 0.1;	
	real alpha1 = 1.1; //	
	real alpha2 = alpha1;	
	<pre>int PLOTMESH =0;</pre>	
	<pre>int PLOTSOL = 0;</pre>	
	<pre>int Niter = 50;</pre>	
	real n1x=1, n1y=0;	
	real n2x=-1, n2y=0;	
	real Gamma=0.8;	
	<pre>int n=17;</pre>	
	<pre>int nadap;</pre>	
	int nt;	
	<pre>if (raf==0) {nt = 16.; nadap</pre>	=24;}
	<pre>else if (raf==1) {nt = 32.;</pre>	nadap=48; }
	<pre>else if (raf==2) {nt = 64.;</pre>	nadap=96;}
	real T=1;	
	real dt = T/nt;	
	<pre>cout << "time-step: " << dt</pre>	<< endl;
73		

117	// Velocity field	
118	Vh ax= $-\sin(pi*(y-0.5))*\cos(pi*(x-0.5));$	
	Vh ay=cos(pi*(y-0.5))*sin(pi*(x-0.5));	
	<pre>real[int] sol(Vh.ndof); // sol at time t(n+1)</pre>	
	<pre>real[int,int] stsol(Vh.ndof,nt); // space-time solution</pre>	
	<pre>if (raf==0) {ifstream file("monodomain_r0.dat"); file >> stsol;}</pre>	
	<pre>else if (raf==1) {ifstream file("monodomain_r1.dat"); file >> stsol;}</pre>	
	<pre>else if (raf==2) {ifstream file("monodomain_r2.dat"); file >> stsol;}</pre>	
133		
134		
135	mesh[int] Th(2);	
136	<pre>int[int] reg(2);</pre>	
137	reg(0)=TH(0.25,0.5).region; //###################################	
138	reg(1)=TH(0.75,0.5).region;	
139	<pre>for(int i=0;i<2;i++) Th[i]=trunc(TH,region==reg(i));</pre>	
140		
141	/* Finite element spaces for each subdomain */	
142	Tespace Vnl(In[0],Pinc);	
143	respace vnz(in[1], vinc);	
144	cout << "number of dof for domain 1 : " << vnl.ndot << end;	
145	Coul << humber of doi for domain 2 :	
140		
1/0		
1/0	/* Define exact solution. Dirichlet condition and source term, and initial condition. */	
150	/* Note that the scheme is implicit thus all data start at $dt */$	
151	White unit that fint).	
152	While the second s	
153	for(int i=0:i <nt:i++){< td=""><td></td></nt:i++){<>	
154	uD[[]=uD[]:	
	$f_1[i]=f[i]: f_2[i]=f[i]:$	
156	}	
	// initial condition	
	Vh1 u01 = u0;	
	Vh2 u02 = u0;	

100	
162	/* Initialization of Rooin data gi, g2 on the interface */
162	Vnl[int] gl(nt);
163	Vnz[int] g2(nt);
164	ranginit(100*clock());
165	Time= OT;
166	tor(int j=0;] <nt;]++)(< td=""></nt;]++)(<>
167	if (INI/GUESS==0) {
168	// Robin value from initial condition
169	g1[] = (nu*(cos(p1*y)*p1*cos(p1*x))+s1n(p1*(y-0.5))*cos(p1*(x-0.5))/2*cos(p1*x)*s1n(p1*y))
170	+ a lpna1*cos(p1*y)*sin(p1*x);
1/1	$g2[j] = (nu*(-\cos(p_1*y))*p_1*\cos(p_1*y)) - sn(p_1*(y-0.5))*\cos(p_1*(x-0.5))/2*\cos(p_1*x)*sn(p_1*y))$
1/2	+ alpna2*cos(p1*y)*sin(p1*x);
1/3	
174	etse i (InitGuessen) {
175	// KODIN Values from the exact solution
175	gi[j] = (nu*(time"+1)*cos(pi*y)*pi=xcos(pi=x))
170	+ $SIn(DIx(y=0.5))xcOs(DIx(x=0.5))/2xcOs(DIx(x=0.5))n(DIx(y)xcOs(2xDIx(Ime)))$
170	+ $dpnd1k(t)me^{-2t1/kCOS(t)ky/kSIn(p1kx);$
100	$g_2(j) = (-\pi)u_x(t_1)u_2(x_1)x_2(x_2)u_2(x_1)v_2(x_1)u_2(x_1)u_2(x_2)u_2(x_1)u_2(x_1)u_2(x_2)u_2(x_1$
100	
101	
192	also if (INITCHESS
184	Cise 1 (AnitoLise=2) (
185	
186	a2[i] = randreal1():
187	
188	time += dt:
190	
191	
	varf a1(u1,v1)= int2d(Th[0])((u1*v1) / dt
	+ 0.5*((ax*dx(u1)+ay*dy(u1))*v1-(ax*dx(v1)+ay*dy(v1))*u1)
	+ nu*(dx(u1)*dx(v1)+dy(u1)*dy(v1)))
	+ intld(Th[0],interface,qfe=qf1pE,qforder=2)(alpha1*(u1*v1))
	<pre>+ on(bottom1,top1,u1=uD1[j])+on(left,u1=uD1[j]);</pre>
	varf bf1(u1,v1)=int2d(Th[0])(v1*f1[j]);
	varf bu1(u1old,v1)=int2d(Th[0])((u1old*v1)/dt);
	varf bg1(u1,v1)=int1d(Th[0],interface,qfe=qf1pE,qforder=2)(g1[j]*(v1));
	varf bcl1(u1old,v1)= on(bottom1,top1,u1old=uD1[j])+on(left,u1old=uD1[j]);
203	varf a2(u2,v2)= int2d(Th[1])((u2*v2) / dt

202	
203	vart a2(u2,v2)= int2d(Th[1])((u2*v2) / dt
204	+ 0.5*((ax*dx(u2)+ay*dy(u2))*v2-(ax*dx(v2)+ay*dy(v2))*u2)
	+ $nu*(dx(u2)*dx(v2)+dy(u2)*dy(v2))$)
	+ intld(Th[1],interface,qfe=qflpE,qforder=2)(alpha2*(u2*v2))
207	+ on(bottom2,top2,u2=uD2[j])+on(right,u2=uD2[j]);
208	varf bf2(u2,v2)=int2d(Th[1])(v2*f2[j]);
	varf bu2(u2old,v2)=int2d(Th[1])((u2old*v2)/dt);
210	<pre>varf bg2(u2,v2)=int1d(Th[1],interface,qfe=qf1pE,qforder=2)(g2[j]*(v2));</pre>
211	varf bcl2(u2old,v2)= on(bottom2,top2,u2old=uD2[j])+on(right,u2old=uD2[j]);
212	
213	
214	<pre>matrix A1= a1(Vh1,Vh1,solver=UMFPACK); // For i=1,2 : Ai : global matrix for subdomain i</pre>
215	matrix Bu1= bu1(Vh1,Vh1); // Bui : right-hand side ui^n/dt
216	<pre>real[int] BC1=bcl1(0,Vh1); // BCi : Dirichlet b.c. for the right-hand side</pre>
217	<pre>real[int] Bf1=bf1(0,Vh1); // Bfi : right-hand side from the source term f</pre>
218	real[int] Bg1=bg1(0,Vh1); // Bgi : right-hand side from the Robin terms gi
219	matrix A2= a2(Vh2,Vh2,solver=UMFPACK);
220	matrix Bu2= bu2(Vh2,Vh2);
221	real[int] BC2=bcl2(0,Vh2);
222	real[int] Bf2=bf2(0,Vh2);
223	real[int] Bg2=bg2(0,Vh2);
224	
225	/* unknown sol (solution at time t(n+1)) and right-hand side b for each subdomain */
226	real[int] sol1(Vh1.ndof), b1(Vh1.ndof);
227	real[int] sol2(Vh2.ndof), b2(Vh2.ndof);
228	
229	/* L2 (at each time) and L2–Linf absolute errors with exact and monodomain solutions, for i=1,2 */
230	real[int] L2error1(nt), L2errormono1(nt);
	real L2Linferror1, L2Linferrormono1;
	real[int] L2error2(nt), L2errormono2(nt);
	real L2Linferror2, L2Linferrormono2;
234	
	/* L2 (at each time) and L2-Linf norms of exact and monodomain solutions, for i=1,2 */
	real[int] L2norm1(nt),L2normmono1(nt);
	real L2Linfnorm1,L2Linfnormmono1;
238	real[int] L2norm2(nt),L2normmono2(nt);
239	real L2Linfnorm2,L2Linfnormmono2;
240	
241	/* L2Linf relative error versus DD iterations */
242	real[int] L2Linferr(Niter);
243	

243	
244	/* Data for the DD solver */
245	/* gl, g2 at previous DD iteration */
246	Vniintj glola(nt);
247	vnz[int] gzola(nt);
240	/* Space-time DD solution */
250	<pre>/* Space time by Space (interior w) /* Space tinterior w) /* Space (interior w) /* Space (interio</pre>
251	\http://withus/second/cites/
252	
253	
254	Ulschwarz[0]=u01; U2schwarz[0]=u02;
255	
256	
257	
258	
259	
260	
261	
262	<pre>for(int iter=0;iter<niter;iter++)< pre=""></niter;iter++)<></pre>
263	f f f f f f f f f f f f f f f f f f f
264	cout << "DD iteration : " << iter << endl;
265	
266	/* Initializations of the time loop for each subdomain */
267	ulold=u01; sol1=ulold[];
268	u2old=u02; sol2=u2old[];
269	
270	/* lime loop */
271	Tor ()=0;) <nc;)++){< th=""></nc;)++){<>
272	//cout co "Time iteration + " co i co endly
274	
275	/* monodomain solution */
276	sol=stsol(:,i):
277	uold[]=sol: u=uold:
278	
279	/* Update the Rhs and solve the system for each subdomain */
280	Bf1=bf1(0,Vh1); Bg1=bg1(0,Vh1); BC1=bcl1(0,Vh1);
281	b1=Bf1; b1+=Bu1*sol1; b1+=Bg1; b1+=BC1;
282	sol1=A1^-1*b1;
283	Bf2=bf2(0,Vh2); Bg2=bg2(0,Vh2); BC2=bcl2(0,Vh2);
284	b2=Bf2; b2+=Bu2*sol2; b2+=Bg2; b2+=BC2;
285	sol2=A2^-1*b2;
206	

286	
287	
288	ulold[]=sol1; u1=ulold;
289	u2old[]=sol2; u2=u2old;
290	
291	
292	Ulschwarz[j+1] = u1;
293	U2schwarz[j+1] = u2;
294	
295	
296	L2error1[j] = sqrt(int2d(Th[0])((u1-Uex[j])^2));
297	L2error2[j] = sqrt(int2d(Th[1])((u2-Uex[j])^2));
298	
299	
300	L2norm1[j] = sqrt(int2d(Th[0])((Uex[j])^2));
301	L2norm2[j] = sqrt(int2d(Th[1])((Uex[j])^2));
302	
303	/* L2 (at each time) absolute error with monodomain solution */
304	$L2errormono1[j] = sqrt(int2d(Th[0])((u1-u)^2));$
305	L2errormono2[j] = sqrt(int2d(Th[1])((u2-u)^2));
306	
307	/* L2 (at each time) norm of monodomain solution */
308	$L2normmonol[j] = sqrt(int2d(Th[0])(u^{2}));$
309	$L2normmono2[]] = Sqrt(int2d(in[1])(u^2));$
310	
311	} // end time toop
312	

```
/** L2-Linf error and L2-Linf norm of exact solution */
L2Linferror1=L2error1(:).Linfty;
L2Linferror2=L2error2(:).Linfty;
L2Linform2=L2norm2(:).Linfty;
L2Linform2=L2norm2(:).Linfty;
L2Linform2=L2norm2(:).Linfty;
L2Linform2=L2norm2(:).Linfty;
L2Linform2=L2norm2(:).Linfty;
L2Linform2=L2norm2(:).Linfty;
L2Linform2=L2norm2(:).Linfty;
L2Linferrormon0=L2errormon01(:).Linfty;
L2Linferrormon0=L2errormon02(:).Linfty;
L2Linferrormon0=L2errormon02(:).Linfty;
L2Linferrormon0=L2errormon01(:).Linfty;
L2Linferrormon0=L2errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormon0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errormen0=L2Errorme
```

Références

- [1] F. CUVELIER, Travaux pratiques, algorithmique et E.D.P. Notes de cours MACS 2, 2020.
- [2] V. EHRLACHER AND F. LEGOLL, Problèmes d'évolution. Département IMI, Cours de deuxième année de l'ENPC, 2020.
- [3] V. GIRAULT, Approximations variationnelles des E.D.P. notes de cours de DEA, 2005.
- [4] J. HOEPFFNER, Matlab : Applications en mécanique. la207, université pierre et marie curie. licence d'ingénierie mécanique. 2012.
- [5] C. JAPHET, Méthodes de Schwarz pour l'équation de diffusion en deux dimensions. Notes manuscrites pour le projet MACS 2, 2021.
- [6] —, Méthodes de Schwarz pour l'équation de diffusion en une dimension. Notes de cours MACS 2, 2021.
- [7] P.-L. LIONS, On the Schwarz alternating method. III: a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20-22, 1989, T. F. Chan, R. Glowinski, J. Périaux and O. Widlund, ed., Philadelphia, PA, SIAM, 1990, pp. 202–223.
- [8] A. QUARTERONI AND A. VALLI, Numerical approximation of partial differential equations, Springer, Berlin Heidelberg, 2008.
- [9] N. VAUCHELET, Méthodes des éléments finis. notes de cours d'Analyse Numérique Avancé, MACS 2, 2021.