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Abstract

The scope of this master’s thesis it to propose detailed methods and comparative results
to add the Heston model in an industrial quantitative library. We review the model
effects as well as mathematical properties. The analytical pricing formula for european
vanilla options and its formal computation are crucial in this work. We develop numerical
methods for its computation, from quadrature rule to fast fourier transform. We propose
calibration results on market data as well as various perspectives depending on purposes.
In a performance outlook, we present several calibration approaches. We obtain efficient
results as soon as we define a target surface near the money, but we get also competitive
outcomes when we use a larger interpolated surface as a target. However, we notice the
poor performance of the variance Swaps calibration method. Finally, we also introduce
issues related to model inputs sensitivities.

Key words: Heston model, Option Pricing, Diffusion, Calibration, Stochastic Volatil-
ity.
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Introduction

Stochastic volatility is a crucial concept in the field of quantitative finance, particularly
in the context of options pricing and risk management. It refers to a financial market
phenomenon where the volatility of an asset is not constant over time but rather follows a
random or stochastic process. Directly related to implied volatility, these two notions are
defined and largely discussed in this thesis. We present implied volatility smile and the
wrong assumption of constant volatility models in a pricing and hedging perspective.

The Heston model is a well-known stochastic volatility model proposed by Samuel L.
Heston in 1993. Mostly used for equities related asset, this model provides a parametriza-
tion that can match the market volatility behaviour. Despite the complexity trade off that
we incur with this model, we still can derived indispensable content for portfolio managers
in the model framework, from partial differential equation to semi-closed pricing formula
for vanilla options. The purpose of this work is to present an overview of this model from a
practical perspective. To proceed, we have decided to cover the implementation of several
interesting axis related to the model from diffusion to sensitivities computation.

What means stochastic volatility modeling and why the Heston model is well suited
for this purpose? In the first chapter we try to answer this question with a comparison to
the Black-Scholes model. How can we explain market dynamic with the Heston model?
This is the topic of the second chapter, as well as the presentation of tools and calibration
methods directly derived from the model framework. Numerical results and relevant issues
that meet the model’s limits are presented in the third chapter. We have also been
interested in further work about volatility parametrization and how the market can reflect
volatility dependency. This is discussed in the fourth chapter. Finally, we can also wonder
what changes are related to portfolio management with the Heston model? To this end,
we propose some results from the literature on greeks and sensitivities computation in
chapter five.

Besides the results produced and presented in this thesis, the purpose of this internship
was to develop codes and documentation on the Heston model in order to create a usable
tool in the pricing and valuation plateform of Exiom Partners named FinX.

Exiom Partners is a consulting firm that provides, to corporate and investment banking
institutions and insurance companies, tools and analytics for risk management. Founded
in 2019, the firm employs about 180 collaborators specialized in law, project management
or actuarial sciences. Its clients are mostly in France but the activity has been recently
diversified with abroad interventions in South America, in Morocco and in the United
Kingdom.
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Chapter 1

Heston model

In this chapter we recall and review in details the upsides of using the Heston model,
particularly in contrast with the Black-Scholes model [1]. The mathematical framework
and theoretical explanation developed by the author Samuel L. Heston in his article
(see [2]) are the core of the first section. We also want to point out convenient discretiza-
tion of the stochastic differential equation. We discuss about the implementation and the
comparison of different schemes. In a final section, we provide a complete developement
to meet Heston’s partial differential equation for vanilla options.

1.1 Stochastic volatility model

Volatility in the Black-Scholes framework is fixed and therefore is independent with
respect to time, strike and maturity. This family of models rely on the hypothesis that
market’s volatility is constant.

As a matter of fact, market’s implied volatility changes depending on strike and ma-
turity. It turns out that we observe an implied volatility smile, a curvature along strike
values that evolves with maturity. Since implied volatility is defined as the numerical value
of volatility in order to obtain the observed market price with the Black-Scholes formula
for vanilla options, it bears out that this value can’t be constant.

Now in a pricing perspective we reach Black-Scholes model’s boundaries as we aren’t
able to replicate observed market prices for liquid options. For a given maturity, the
dependency in strike of implied volatility can be understood by risk-aversion arguments
that we will underline further. The main assumption of Heston’s model is that volatility
is defined as a random variable.

In the following, we denote as (Ω,F ,P), the probabilistic space of interest with P the
physical measure of probability.

We consider a specific market with a risky asset denoted as {St}t≥0 and a risk-free
asset denoted as {S0

t }{t≥0}. For convenient purpose we also consider a constant risk-free
interest rate r, such that we can define the discount factor B and the expression of the
risk-free asset:

Bt := e−rt and S0
t = S0

0e
rt.

The diffusion of {St}t≥0 in the case of the Heston model could be written as:

2
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dSt = µStdt+

√
ν(t)StdB

(1)
t

d
√
ν(t) = −β

√
ν(t)dt+ δdB

(2)
t

d < B(1), B(2) >t= ρdt

. (1.1)

where µ, β et δ are constant parameters. As a matter of fact, problem (1.1) could be
transformed into an equivalent and more common form:


dSt = µStdt+

√
ν(t)StdB

(1)
t

dν(t) = κ[θ − ν(t)]dt+ σ
√
ν(t)dB

(2)
t

d < B(1), B(2) >t= ρdt

. (1.2)

This parity is a direct application of Ito’s lemma to the square function associated to
the process {

√
ν(t)}t≤0, which is defined as an Ito process in problem (1.1). Hence we can

define constant parameters such that κ := 2β, θ := δ/2β and σ := 2δ. We recognize that
in problem (1.2), the variance process {ν(t)}t≤0 is exactly a CIR process or as mentionned
previously a square-root process, thus this process is positive.

Feller’s condition defined as 2κθ > σ2, ensures strict positivity as well as the existence
and uniqueness of the continuous solution of this stochastic differential equation (see [3]).
We distinguish five parameters to this model: ν0 the initial point of the variance process
for the reason that it is not directly observable on the market, κ, θ, σ and ρ. Further
details will be provided on the influence of each parameter.

As pointed out in litterature (see [4],[5]), since the variance process is well defined,
the only difficulty for option pricing is the two-dimensionnal randomness. Considering a
portfolio with an available asset of our market and an option on {St}t≤0, we can prevent
from this risky asset or spot process movements by buying or selling this asset but we can’t
provide a solution for variance movements as it is not defined as an asset. Therefore, in
our market, Heston’s model is unusable since hedging an option on {St}t≤0 is impossible.

Now that we have introduced Heston’s model, we are interested in the effects that can be
created with stochastic volatility diffusion. This is a major difference with Black-Scholes’s
model, and we want to highlight benefits of this representation.

A good start could be to point out shared properties of Heston’s model with more
classical Geometric Brownian Motion model (GBM). Options prices are affected in the
same way with volatility. High values of variance process increase prices whereas low
values reduce them.

Let’s focus on the diffusion of ν under a risk-neutral framework:

dν(t) = κ∗[θ∗ − ν(t)]dt− σ
√
ν(t)dW 2

t , with κ∗ := κ+ λ, θ∗ :=
κθ

κ+ λ
.

We identify a drift term that is similar to an Ornstein-Ulhenbeck process, so we can
capture the mean reversion phenomenon. As soon as ν is over θ∗, the drift is negative and
in return when ν is lower than θ∗, the drift is positive. The drift term helps the process
to stay close to θ∗ therefore it can be presented as the mean of the process and κ∗ can
be seen as the speed at which the process ν goes back to its mean. Particularly when
θ∗ increases, prices also increase as explained before since θ∗ has a direct influence on ν.
Note that λ shouldn’t be considered as a parameter, it is the market price of volatility
risk and we refer to [4] for more details. We are interested in finding directly proper κ∗

and θ∗ that fit market data in order to use risk-neutral tools to price derivatives.

CHAPTER 1. HESTON MODEL 3
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Figure 1.1: Influence of ρ, σ and ν0 (left to right) parameters on implied volatility smile.
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Figure 1.2: Influence of κ and θ parameters on implied volatility smile.

Parameters ν0, σ and ρ generate effects that change the behavior of the model from
a GBM. They allow a reproduction of the implied volatility smile of the market, which
isn’t possible with a constant volatility model. Figure [1.1] presents the impacts of those
parameters on the volatility smile for a specific maturity. Whereas ρ clearly influences
skewness of the smile, σ and ν0 change respectively the slope and the global level of the
curve.

The value of σ is meaningful, the higher σ is, the more uncertain the volatility will
be. Uncertainties on volatility reflects uncertainties on prices, therefore, and according to
observations that we can make on the middle figure [1.1], at-the-money (ATM) options
prices are reduced. It is a simple consequence that uncertainty on volatility implies a
decreasing probability of the event that the option reaches a positive intrinsic value.

As mentionned before parameters κ and θ have direct influence on variance dynamic,
but they also have an influence on volatility smile, see figure [1.2]. We notice that as κ
values increase convexity of the smile decrease. Which is the opposite effect of increasing
σ value. Parameter θ is similar to parameter ν0 since we see that we mainly operate on
level of implied volatility by tuning these parameters.

Also ρ values and their effects can be easily understood. As a matter of fact, negative
values increase in-the-money (ITM) Call and out-of-the-money (OTM) Put prices. This
phenomenon has a comprehensive interpretation on equity market: a negative value of ρ
implies that a strong rise in volatility will induce a fall on the underlying. Thus when the
underlying is decreasing, prices of OTM Put rise because sell’s options tend to become in-
the-money options. And when the underlying is stable, OTM Put can be a protection to
prevent a strong downgrade of the underlying. Symmetrical arguments can be underlined
for positive values of ρ, and this is the case of commodities market: in a period of high
volatility, a preference for insurance tends to increase OTM Call since we prefer to pay a
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higher price for a supply than having any supply at all.

1.2 Discrete forms and specificities

If the benefits of using Heston’s model are clear in a modeling point of view, we can won-
der what are the impacts of this model choice especially on diffusion. The Black-Scholes
model defines a log-normal distribution of the underlying. Parameters are constant, so
there is no need to approximate paths to have a projected value of the underlying at a
specific future date. The Heston model is different in a sense that it is path-dependent:
the underlying’s value at a future date depends on the variance’s value at this future date.
Therefore behavior of the spot process is much more complex, and the law unknown.

In this paragraph we are interested in approximating the theoretical law of our under-
lying. It could be useful for pricing and risk management to use Monte-Carlo methods.

In fact, the conditional law of the variance process is known and could be defined as
a noncentral chi-squared distribution, but we still need to estimate behavior of the spot
process with a discrete scheme. This is the cost to pay in order to have more market
consistency in our modeling.

A particularity of a CIR process is that we know the conditional law of the solution. It
is the consequence of expressing CIR diffusion’s solution as a Bessel process, which leads
to the following proposition:

Proposition 1. ∀s < t, we have that ν(t)|ν(s) follows a chi-squared distribution of 4κθ
σ2

degrees of freedom and a non-centrality parameter of ν(s)n(s, t), i.e

ν(t)|ν(s) ∼ χ2

(
4κθ

σ2
, ν(s)n(s, t)

)
,

with n(s, t) defined as follow:

n(s, t) :=
4κe−κ(t−s)

σ2(1− eκ(s−t))
.

We will consider in the following, Leif Andersen’s method to compute efficiently ran-
dom paths according to this property (see [6]). However we can compute paths that are
consistant with CIR marginal distribution, we will see that this method could be slow
compared to a discrete scheme. A major discussion that we will have in this section is: Is
this method useful in practice? Or can we do the same with approximations and therefore
less computational time?

We are looking for answers by studying four different schemes. These schemes are part
of literature and especially the article of Milan Mrazek and Jan Pospisil (see [7]). This
paper provides us with theoretical and numerical knowledge for practical implementation.
We aim at validating our code and our understanding by reproducing results of this article.
Therefore convenient schemes such as Alfonsi’s implicit and explicit schemes for variance
process (see [8]) and their combination with spot process schemes haven’t been studied.

In the following, we consider a grid of time π := {t0 < t1 < ... < tN}, ∆n := tn+1 − tn
and we denote as h := maxn∈{0,...,N−1}∆n its time step. We also introduce a useful
notation ∆Wn := Wtn − Wtn+1 , which is the increment of a Brownian motion on the
grid π. For convenient purpose we also use a Cholesky decomposition in order to obtain
correlated path: ∆WC

n := ρ∆W ν
n +

√
1− ρ2∆WS

n .

CHAPTER 1. HESTON MODEL 5
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The first scheme of interest is the Euler scheme. Both processes of the Heston model are
discretized with a first order approximation. A correction is added to the variance process
to guarantee positivity, notation ·+ refers to max(·, 0): this is an absorption correction.

{
Sπ
tn+1

= Sπ
tn exp

(
(r − νπ(tn)+

2 )∆n +
√
νπ(tn)+∆W

C
n

)
νπ(tn+1) = νπ(tn) + κ[θ − νπ(tn)+]∆n + σ

√
νπ(tn)+∆W

ν
n

. (1.3)

We use log-spot process in our scheme because, as it is mentionned by Gatheral [4],
in this case its prevents from the influence of higher order terms as we introduce an
intermediate step using Ito calculus. The second scheme used in our work is the Milstein
scheme where both processes of the Heston model are discretized with a second order
approximation.

{
Sπ
tn+1

= Sπ
tn + Sπ

tn

(
(r − νπ(tn)+

2 )∆n +
√
νπ(tn)+∆W

C
n + νπ(tn)+

2 (∆WC
n )2

)
νπ(tn+1) = νπ(tn)− σ2

4 ∆n + κ[θ − νπ(tn)+]∆n + σ
√
νπ(tn)+∆W

ν
n + σ2

4 (∆W ν
n )

2
.

(1.4)

A way to find a convenient discretization for the spot process often starts with the
continuous formulation:

ln(St) = ln(Su) + r(t− u)− 1

2

∫ t

u
ν(s)ds+ ρ

∫ t

u

√
ν(s)dW ν

s +
√
1− ρ2

∫ t

u

√
ν(s)dWs,

ν(t) = ν(u) + κθ(t− u)− κ
∫ t

u
ν(s)ds+ σ

∫ t

u

√
ν(s)dW ν

s .

Based on this formulation the idea of Broadie and Kaya (see [9]) is to replace the formu-
lation of the stochastic term given by the continuous variance process into the expression
of the continuous spot process:∫ t

u

√
ν(s)dW ν

s =
1

σ

(
ν(t)− ν(u)− κθ(t− u) + κ

∫ t

u
ν(s)ds

)
.

Therefore we only need to approximate one deterministic term and one stochastic term.
According to Riemann’s integral, a convenient approximation for the deterministic term
would be: ∫ t

u
ν(s)ds ≈ (t− u) [γ1ν(u) + γ2ν(t)] ,

where γ1 and γ2 are arbitrary weights that sum to one. We recall that if we choose γ1 = 1.0
and γ2 = 0.0, we are in the case of the Euler scheme. By default, we have considered in the
following that both values are equal to 0.5. We can notice that doing this approximation
on the deterministic term leads to simplification on the stochastic one. By construction,
we know that: ∫ t

u

√
ν(s)dWs ∼ N

(
0,

∫ t

u
ν(s)ds

)
.

Since we have approximated the variance we could have an approximation of the stochastic
term. A scheme denoted as E+M, uses this spot process dsicretisation. E for exact scheme
on spot process and M for the Milstein scheme on variance process:

{
Sπ
tn+1

= Sπ
tn exp

(
Kn

1 +Kn
2 ν

π(tn)+ +Kn
3 ν

π(tn+1)+ +
√
Kn

4 ν
π(tn)+ +Kn

5 ν
π(tn+1)+Z

)
νπ(tn+1) = νπ(tn)− σ2

4 ∆n + κ[θ − νπ(tn)+]∆n + σ
√
νπ(tn)+∆W

ν
n + σ2

4 (∆W ν
n )

2
.

(1.5)
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In (1.5), Z is a standard gaussian random variable, and we define Kn
1 ,K

n
2 ,K

n
3 ,K

n
4 and

Kn
5 as:

Kn
1 := ∆n

(
r − ρκθ

σ

)
, Kn

2 := ∆nγ1

(
κρ

σ
− 1

2

)
− ρ

σ
, Kn

3 := ∆nγ2

(
κρ

σ
− 1

2

)
+
ρ

σ
,

Kn
4 := ∆nγ1

(
1− ρ2

)
, Kn

5 := ∆nγ2
(
1− ρ2

)
.

Schemes (1.3), (1.4) and (1.5) all use a discretization of the variance process. But as
it is mentionned above, we know the conditional law of the variance process. Moreover
a method to sample variance process paths from this exact law is presented in [6]. This
method exploits the two-way behavior of the variance process.

ν(t) = a(b+ Z)2, and for low variance ν(t) = ψ−1(U ; p, β). (1.6)

where Z and U are respectively standard gaussian and standard uniform random vari-
ables and ψ is a cumulative distribution function (CDF) based on an asymptotic density:

ψ : x 7→ p+ (1− p)(1− e−βx), so ψ−1 : u 7→
{
0, if u ≤ p
1
β ln

(
1−p
1−u

)
, if u > p

.

This expression implies that p parameter is in [0, 1]. Finally all parameters a, b, p and β
are computed by using first two moments that are known for u < t:

E [ν(t)|ν(u)] := θ + (ν(u)− θ)e−κ(t−u),

V [ν(t)|ν(u)] := ν(u)σ2e−κ(t−u)

κ

(
1− e−κ(t−u)

)
+
θσ2

2κ

(
1− e−κ(t−u)

)2
.

We refer the interested reader to [6] to explicitly see formulas that link these moments
with the above parameters. It remains to define a threshold which will help us to use one
of the previous sampling expressions (1.6). Leif Andersen advises to pick a level in the
interval [1, 2], and specifies that this choice doesn’t infer in the simulation. In the following
we have fixed this threshold to 1.5. Expression (1.6) and the exact scheme used in (1.5)
are part of a studied scheme that is denoted as Quadratic Exponential:

{
Sπ
tn+1

= Sπ
tn exp

(
Kn

0 +Kn
2 ν(tn) +Kn

3 ν(tn+1) +
√
Kn

4 ν(tn) +Kn
5 ν(tn+1)Z

)
ν(tn+1) = a(n)(b(n) + Z)2, and for low variance ν(tn+1) = ψ−1(U ; p(n), β(n))

. (1.7)

We precise that Kn
2 , K

n
3 , K

n
4 andKn

5 are the same variables defined previously, however
Kn

0 is a modified term to take into account the martingale correction recommended in [6].
Dependency in n remains as this term is computed differently according to the sampling
formula used to compute ν(tn). We also underline the fact that parameters a(n), b(n), p(n)

and β(n) depend on the value of ν(tn) through the expression of the first two moments.

Now that we have seen several ways to approximate the law of our spot process, we
are interested in quantifying approximations that have been done. The purpose of strong
convergence and weak convergence is to measure the error introduced with our scheme.

CHAPTER 1. HESTON MODEL 7
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Definition 1. (Weak convergence) An approximating process Y π of Y converges in the

weak sense with order β > 0 if for each g ∈ C2β+1
p there exists a finite constant K and a

positive constant h0 such that:

εW (π) := |E [g(Y π
T )− g(YT )] | ≤ Khβ

for any time discretisation with maximum step size h ∈ (0, h0) (see [10]).

Definition 2. (Strong convergence) An approximating process Y π of Y converges in the
strong sense with order γ > 0 if there exists a finite constant K and a positive constant
h0 such that:

εS(π) := E [|Y π
T − YT |] ≤ Khγ

for any time discretisation with maximum step size h ∈ (0, h0) (see [10]). We often use

E
[
sup
r∈π
|Y π

r − Yr|
]
as an approximation of Khγ.

It is important to mention that it is very complicated to evaluate strong and weak
convergences of our schemes of interest (1.3). (1.4), (1.5) and (1.7) to the theoretical law.
This is a consequence of our dependency in square root variance in our spot process and
our variance process for schemes (1.3), (1.4) and (1.5). Due to the fact that the square
root function isn’t lipschitz, estimation of errors induced with our spot process schemes
are far more difficult.

Nevertheless, we can consider the following lemma from Alfonsi (see [8]), to compute
numerically strong convergence for each scheme.

Lemma 1. Let us consider an approximating process Y π that converges towards Y in the
sense:

E
[
sup
r∈π
|Y π

r − Yr|
]
→
h→0

0

where h is the step of the discrete grid π. Then for any α > 0, K ≥ 0,

E
[
sup
r∈π
|Y π

r − Yr|
]
≤ Khγ ⇔ E

[
sup
r∈π
|Y π

r − Y 2π
r |
]
≤ Khγ

where 2π grid is twice thiner than π.

Several points need to be underlined from the above lemma in order to compare various
spot process schemes for the Heston model. First we need the schemes to be computed
with the same randomness since we want to estimate an average behavior under the same
probability measure. Furthermore, we need to compare two vectors of same lenght, so for
our spot process S2π

r for r ∈ π means that we take only values computed at a discrete
time with an even index. We are thus able to approximate strong convergence order for
each schemes. Results can be seen on figure [1.3], where the average is computed on 10000
paths for each time-step h.

Figure [1.3] shows that as long as h is thin enough, schemes tend to converge towards
the same order. However means are estimated and should be presented with a confidence
interval, we can’t identify a scheme which provides a better approximation spot process
law in the Heston model. But we can also be interested in evaluating their performance
in a pricing perspective.

We present here a second test which is detailed in [7]. For a given range of vanilla call
options, we can estimate prices of these options using a Monte-Carlo method over 1000
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Figure 1.3: Evolution of ∥εS∥∞ := E
[
supr∈π |Sπ

r − S2π
r |
]
for different time-step h of π.

paths with a time-step h. Prices computed can then be compared to a reference price.
In the case of the Heston model we have an explicit formula for Call options that we will
detail in §2.1, and for a given set of parameters of this model we can use this formula as
a reference. Therefore we can define an error ε:

ε :=
1

N

N∑
n=1

∣∣∣∣∣Cn − Ĉn

Cn

∣∣∣∣∣ .
where N is the number of options, Cn and Ĉn denote respectively the reference price and
the Monte-Carlo computed price. However our Monte-Carlo computed price is sensitive
to the generated paths, which makes ε a random variable. We can compute a confidence
interval by repeating this computation of ε a hundred times with different sets of paths.
The above method is repeated with different values for the time-step h in order to evaluate
the accuracy of the computed prices.

The set of parameters is the same that is used in the paper [7]. We generate paths and
reference prices according to values presented in table 1.1.

ν0 κ θ σ ρ

0.02497 1.22136 0.06442 0.55993 −0.66255

Table 1.1: Parameters of the Heston model, r = 0.00207, S0 = 7962.31.

Results can be seen on figure [1.4]. We remark that Quadratic Exponential scheme
produces the poorest results especially when h is small. More precisely results are more or
less constant, and there is no convergence of this scheme according to h. As mentionned
before this scheme can be slow and doesn’t seem to be relevant from a pricing perspective.
Contrary to Quadratic Exponential scheme, other schemes of interest are associated to
decreasing values as long as h is decreasing, and moreover the schemes converge towards
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Figure 1.4: Evolution of ε with a confidence level of 95% for different time-step h of π.

the same error value. We note also that for large values of h, the log-Euler scheme provides
the largest error whereas E+M scheme provides the smallest error.

This result differs from results observable in paper [7]. In the article Quadratic Expo-
nential is the scheme that leads to the smallest pricing error in average. Note also that
the authors use a computed price over 100000 paths whereas we compute prices with 1000
paths. An observation that should be made is that these schemes operate the same way
as they are presented in the article, and E+M scheme should be used for large values of h
as it leads to the lowest value of ε.

We conclude that results presented in this section don’t allow us to clearly see the
benefits of using Leif Andersen’s method to simulate variance process.

1.3 Valuation Partial Differential Equation

We have seen that in comparison with the Black-Scholes model, it is more complicated
to simulate the Heston model and to evaluate approximations quality due to a the lack of
results on law and convergence. In this section we are interested in meeting the Heston
valuation partial differential equation, and we will see that there is also some difference
with GMB model.

The first problem which was underlined in §1.1 is that our market is incomplete. In
order to give a price C to options with (1.2), an alternative is to complete our market
with another asset of price P . Under a risk-neutral measure Q we know how to define the
price at a time t of an option of maturity T and payoff ϕ (see [11]):

Ct := EQ
[
BT

Bt
ϕ(ST )|Ft

]
. (1.8)
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As long as S and ν are driven by Brownian motions, the assumption of a Markovian
framework is plausible. Thus we can write:

Ct =
BT

Bt
EQ [ϕ(ST )|S, ν] =: U(S, ν, t),

with U a smooth function with respect to all arguments. We also know that processes
S̃t := BtSt and C̃t := BtCt are Q-martingales. In the following we consider that the
market is arbitrage-free, it allows us to justify the existence of at least one risk-neutral
probability measure Q.

The price of an option is exactly the cost to replicate this option or the price to generate
ϕ(ST ) at time T . To evaluate this cost, we can consider a portfolio Π with our option
of interest C, the asset S and another option P that depends on volatility. As specified
above, P will denote the price of the option used to complete the market. We want to
evaluate changes in this portfolio during a time dt (see Gatheral [4]). At any date t we
consider that our portfolio value is exactly Ct. We suppose that {α0

t }t∈[0,T ], {α1
t }t∈[0,T ]

and {α2
t }t∈[0,T ] are proportions hold for the assets {Ct}t∈[0,T ], {St}t∈[0,T ] and {Pt}t∈[0,T ]

respectively. Then the portfolio value and self-financing condition could be written as:

Πt = α0
tCt − α1

tSt − α2
tPt. (1.9)

dΠt = α0
t dCt − α1

t dSt − α2
t dPt. (1.10)

Additionally C and P should be interpreted as smooth functions according to (1.8), and
since S and ν are solution to problem (1.2) we can apply Ito’s lemma. Stochastic coeffi-
cients in diffusion aren’t impacted by change of measure, hence we can write:

d < S, S >= νS2dt, d < ν, ν >= νσ2dt and d < S, ν >= σνSρdt.

dCt = LCdt+
∂C

∂S
dS +

∂C

∂ν
dν, dPt = LPdt+

∂P

∂S
dS +

∂P

∂ν
dν.

with L the differential operator associated with finite differential term in Ito’s lemma
formulas. To create a riskless replication strategy, terms in dS and in dν, so randomness,
in equation (1.10) need to balance, thus we have:

∂C

∂S
= α1

t + α2
t

∂P

∂S
,

∂C

∂ν
= α2

t

∂P

∂ν
.

Given relation (1.9) and by considering that α1
t and α2

t are defined as above, we can write:

dΠt = r

[
Ct −

(
∂C

∂S
− α2

t

∂P

∂S

)
S − α2

tPt

]
dt.

All these arguments can be used to write a new formulation of equation (1.10):

LC − rC + rS ∂C
∂S

∂C
∂ν

=
LP − Pr + rS ∂P

∂S
∂P
∂ν

.

As we know that C and P are prices of two different assets, quantities above can’t be
equal as prices differ. It proves the existence of a function f which depends on S, ν and
t and satisfies the equation above. Because we are interested in giving the price C of the
option, we consider the expression:

LC − rC = −f(S, ν, t)∂C
∂ν
− rS ∂C

∂S
. (1.11)
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A possible interpretation could be that because f is the coefficient of the term ∂C
∂ν and

rS is the coefficient of the term ∂C
∂S , f is the drift function of the process ν under a risk-

neutral measure. We can try to be more precise by writting, in a risk-neutral framework,
the diffusion of S as we know that S̃t is a martingale:

dSt
St

=

(
µ− µ− r√

ν(t)

√
ν(t)

)
dt+

√
ν(t)dW 1

t .

where {W 1
t }t≥0 is a Brownian motion under a risk-neutral measure. Note that the drift

term is effectively equal to r. We deliberately keep µ, the drift under the physical measure,
and the volatility term in

√
ν(t) to find the equivalent in the diffusion of ν. Intuitively a

proper form to define f would be:

f(ν, t) := κ[θ − ν(t)]− λσ
√
ν(t), λ ∈ R.

Therefore we find the partial differential equation (1.12) of the original Heston article.
A more mathematical approach using Girsanov’s theorem can also be consider. In fact,
by using Cholesky decomposition it is possible to develop the calculations and define an
equivalent of (1.2) under a risk-neutral measure. The same partial differential equation
can be found by using Ito’s lemma and the fact that S̃t is a martingale. We refer the
reader to §A.1 for details.

1

2
νS2∂

2U

∂S2
+ ρσνS

∂2U

∂S∂ν
+

1

2
σ2ν

∂2U

∂ν2
+ rS

∂U

∂S
+ f(ν, t)

∂U

∂ν
− rU +

∂U

∂t
= 0. (1.12)
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Chapter 2

Calibration, context and
implementation

In this chapter, we provide formulas and numerical methods with the objective to turn
our theoretical model in an usable tool. If we recall our objective from the previous
section, we want to find values of our parameters that are consistent with the market. In
fact we can evaluate how our model differs from the market, especially european vanilla
options, with a semi-closed formula, that we will introduced in the first section. Because
of the semi-closed nature of this formula, it is not directly computable. In the second
section, we present numerical methods to efficiently approximate this formula. As this
section will be more practical we will also present the code architecture. Finally, we will
add market consistency to our work by introducing our calibration procedure through
literature discussions.

2.1 Pricing of European option: a semi-closed formula

Let us consider an underlying with the Heston risk-neutral dynamic:


dSt = rStdt+

√
ν(t)StdW

(1)
t

dν(t) = κ[θ − ν(t)]dt+ σ
√
ν(t)dW

(2)
t

d < W (1),W (2) >t= ρdt

. (2.1)

We can in fact introduce a formula for Call options.

Proposition 2. Price C0(T,K) at time t = 0 of a european Call of strike K and maturity
T verifies:

C0(T,K) = S0Q̃(ST > K)−Ke−rTQ(ST > K). (2.2)

Proof. Since the definition of Q-price is C0(T,K) := E
[
e−rT (ST −K)+

]
as mentionned

in (1.8), with E the expected value with respect to Q. We can introduce a new measure
Q̃ such as :

dQ̃
dQ

=
ST

E[ST ]
=

ST
S0erT

, LT :=
ST
S0erT

where last equality holds from the fact that process {S̃t}t∈[0,T ] is a Q-martingale so

e−rTE[ST ] = S0. We denote as Ẽ the expected value with respect to Q̃.

13
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We can develop the following expression:

E [(ST −K)+] = E [ST 1ST>K ]−KQ(ST > K),

= E
[
ST
LT

1ST>KLT

]
−KQ(ST > K),

= Ẽ
[
ST
LT

1ST>K

]
−KQ(ST > K) (Bayes formula),

= S0e
rT Q̃(ST > K)−KQ(ST > K).

Multiplying with the discount factor we get that C0(T,K) satisfies (2.2).

Since Call-Put parity (2.3) is a model free relationship, we can reduce our research to
a formula of the analytical computation of (2.2).

S0 −Ke−rT = C0(T,K)− P0(T,K). (2.3)

Fourier pricing formula helps defining an explicit formulation of the probabilities ac-
cording to the log-spot caracteristic function.

Proposition 3. Denote ϕT (z) := E[eizXT ], XT = ln(ST ) and k = ln(K), we have:
Q(ST > K) =

1

2
+

1

π

∫ +∞

0
Re
[
eizkϕT (z)

iz

]
dz

Q̃(ST > K) =
1

2
+

1

π

∫ +∞

0
Re
[
eizkϕT (z − i)
izϕT (−i)

]
dz

. (2.4)

Then our last step to define a semi-closed formula is about determining the expression
of the log-spot caracteristic function in the case of the Heston model. Model’s diffusion
is explicitly affine and Markovian, and in this case we know the form of the log-spot
caracteristic function.

Proposition 4. For the Heston model, ϕT is such that ∀z ∈ R+:

ϕT (z) = eC(τ,z)θ+D(τ,z)ν(t)+iz(Xt+rT )

with τ := T − t where t denotes the valuation date, which involves that ν(t) and Xt are
known. Particularly, by defining:

ω := −1

2
z(i+ z), y := κ− ρσiz, c :=

σ2

2
, p :=

√
y − 4ωc, y± :=

y ± p
2c

, g :=
y−
y+

we have that:

C(τ, z) := κ

[
τy− −

1

c
ln

(
1− ge−pτ

1− g

)]
, D(τ, z) :=

1− e−pτ

1− ge−pτ
y−.

We note that this expression differs form the one presented in [2]. Heston’s formulation
incurs a discontinuity as it is presented in [12]. The above expression presents an advantage
as it is numerically more robust, and is equivalent to the one presented by Gatheral.

On one hand, proposition 3 is often written with one intergral as it prevents from
adding another numerical uncertainty with a second intergral. In fact ϕT (z) is a caracter-
istic function associated to a risk-neutral density which can be defined by inverse Fourier
transform (IFT):

ϕT (ω) =

∫ +∞

−∞
eiωxq(x)dx

(IFT )⇒ q(x) =
1

2π

∫ +∞

−∞
e−iωxϕT (ω)dω.
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On the other hand we have by recalling definition (1.8) and denoting as x the random
part of spot process that:

C0(T,K) = e−rTEQ
[
S0e

rT+x|S0erT+x ≥ K
]
− e−rTEQ

[
K|S0erT+x ≥ K

]
.

Since we know the expression of the risk-neutral density, by defining l := Ke−rt

S0
, we have

by identification that:

Q̃(ST > K) =

∫ +∞

l
ex
(

1

2π

∫ +∞

−∞
e−iωxϕT (ω)dω

)
dx.

Using Fubini’s theorem and dissociating case with possible values of l, one can show that
we have an expression that can be computed with residual theorem (see [Appendix A.3]).
We thus obtain:

Q̃(ST > K) = 1 +
1

2π

∫ +∞

−∞
ϕT (ω)

e−i(ω+i)l

i(ω + i)
dω.

Because we need real values, we have that the expression of the Q-price can be rewritten
as :

C0(T,K) = S0 −
e−rTK

2
− e−rTK

[
1

π

∫ +∞

0
(A(ω) +B(ω))

1

1 + ω2
dω

]
, (2.5)

A(ω) := Re(ϕT (ω)) +
Im(ϕT (ω))

ω
, B(ω) := Im(ϕT (ω))−

Re(ϕT (ω))
ω

.

In the following, combination of (2.2) and (2.4) will be denoted as Heston’s formula,
whereas (2.5) will be denoted as Attari’s formula. A crucial part of the implementation
will be how to compute integral in each formula and this will be discussed in the next
section.

A such technique implies that according to a continuous relationship, we introduce a
computing error using discrete points. A possibility is also to consider directly a discrete
approximated formulation of the problem. In our case this is convenient using the Fast
Fourier Transform algorithm, a method that has been developed by Carr and Madan
(see [13]). The particularity of this method is to compute prices on a whole range of
strikes with a time complexity that is linearithmic O(n log(n)). It is also a well-known
algorithm that can be used in many languages standard library by giving the discrete
Fourier transform of the problem. Formulas provided by Carr and Madan are the following
approximations Ĉ0 of C0:

Ĉ0(T, e
kn) =

e−αkn

π
Re

N−1∑
j=0

e−2iπ jn
N e−ikzjψα

T (zj)wj

 , (2.6)

Ĉ0(T, e
kn) =

1

sinh(αkn)π
Re

N−1∑
j=0

e−2iπ jn
N e−ikzjγαT (zj)wj

 . (2.7)

The grid kn is defined as kn := k + 2πn
Nh , ∀n ∈ {0, ..., N − 1} with k = ln(S0) + rT − π

h

and zj = jh. Weights wj refer to Simpson’s rule for quadrature: wj := h
3 (3 + (−1)j+1 −

1{j=0}∪{j=N−1}).

In the article, Carr and Madan provide numerical values for parameter N = 4096, the
dumping factor α = 1.5 and the step h = 0.25 and will be used in our implementation.
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Functions ψT and γT are both dependent of ϕT but aren’t the same. In fact, formula (2.7) is
supposed to outperfom formula (2.6) especially for the computation of OTM option price.
Therefore, we will often refer to (2.6) as the FFT formula and (2.7) as the FFTOTM
formula.

By considering that we have an efficient method to compute Heston’s formula and
Attari’s formula, we have then four ways to give a price to european vanilla options based
on our Heston model parameters, through ϕ especially.

2.2 Implementation issues and overview

We have discussed previously the relationship between our Heston model and the price
of an european vanilla option. We have also seen that methods such as FFT and FFTOTM
are ready to use since it can be computed, in the case of the FFT formula for example,
by providing the entry vector:(
e−ikz0ψα

T (z0)w0, e−2iπ n
N e−ikz1ψα

T (z1)w1, · · ·, e−2iπ
(N−1)n

N e−ikzN−1ψα
T (zN−1)wN−1

)T
.

However, in order to use the Heston and Attari formulas, we need to precise their discrete
approximation. The particularity of these formulas is that it involves integrals over an
unbounded interval. In literature, this kind of calculation are often done by using a factor
that ensures integrability of our function of interest on large values of our semi-axis. This
is the case of the Gauss-Laguerre method where the function integrated is e−x times our
initial integrand of interest.

But this is not the only way to proceed, in fact Jäckel, Kahl and Lord (see [12] and [14])
show that we can use a change of variable which helps us to change the integral over the
positive semi-axis into an integral over the unit interval [0; 1]. By doing this modification,
we are able to use a wide range of quadrature rules. According to the work of Schmelzle
(see [15]), we have decided to study the adaptative Gauss-Kronrod procedure mainly
because it is presented as the best compromise between computation time and accuracy.

In this section, we will introduced Gauss-Laguerre and Gauss-Kronrod quadrature
methods and discussed about code issues. To add some context, we are interested in
computing:

I :=

∫ +∞

0
f(x)dx,

where f depends on the characteristic function of our Heston model and doesn’t differ
that much whereas we consider the Heston formula or the Attari formula. As mentionned
before, Gauss-Laguerre rule allows us to compute:

∫ +∞

0
e−xg(x)dx ≈

N∑
i=1

wig(xi),

where (wi)1≤i≤N and (xi)1≤i≤N are respectively weights and nodes of the quadrature. We
can therefore compute I:

I :=

∫ +∞

0
f(x)dx =

∫ +∞

0
e−xh(x)dx ≈

N∑
i=1

wih(xi),
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where h(x) := exf(x) given values for weights and nodes. But by definition, xi is the i-th

root of the Laguerre polynom LN := ex

N !
dN

dxN (e−xxN ). Weights are then computed by the
following formula:

wi =
xi

[(N + 1)(LN+1(xi))]
2 , ∀i ∈ {1, ..., N}.

We note that we reach small values of wi, around 10−100, as soon as N is larger than
a hundred. With our code we use Python’s package NumPy to obtain numerical values
of weights and nodes according to the value of N wanted. In our case, given different
numerical values of Heston model parameters, we estimate the number N needed by fixing
a tolerance on the residual: we increase N as long as the absolute difference between the
computation with N − 1 and N is above a fixed tolerance threshold. We observed, for the
Heston formula, that in some cases we reach N = 186 without being under the threshold,
but we can’t compute the integral with a larger value of N as NumPy doesn’t allow it.
Unless otherwise stated, we will use the Gauss-Laguerre quadrature rule with N = 180.
This means that in the case of the Heston formula and because two approximations are
computed, we have 360 calls to the characteristic function of our model to compute a
price, given values for maturity T and strike K.

We have also been interested in exponentially-fitted quadrature rule (see [16]) in order
to reduce number of calls to ϕT and speed-up the procedure. Benefits from this method
come from the fact that nodes and weights are computed according to the oscillatory
nature of the integrand. So nodes and weights depend of the function of interest whereas
with Gauss-Laguerre rule nodes and weights are the same independently from the function
to be intergated. But this method implies to solve an ill-conditionned system to obtain
weights values. Therefore we can’t compute values for N larger than 6 which leads to poor
approximations in terms of accuracy.

Gauss-Kronrod adaptive procedure is a little bit different. As it is adaptive, integration
points are selected depending where information is lost, so where it is difficult to integrate.
It is usually done by subdivising the original interval and this is the case for Gauss-Kronrod
quadrature rule. Literature often present Gauss-Kronrod quadrature rule on bounded
interval, and even if this kind of procedure can be used for semi-infinite interval, as it is
done in QUADPACK (see [17]), we present here a change of variable in order to modify
I directly. In their article Kahl and Jäckel [12] proposed the following change:

I :=

∫ +∞

0
f(x)dx =

∫ 1

0
f(x(y))dy, x(y) = − ln(y)

C∞
, C∞ =

√
1− ρ2
σ

(ν0 + κθT ) .

Note that C∞ constant only depends on model parameters ν0, κ, θ, σ and ρ as well as
maturity option T .

Now regarding the method, Gauss-Kronrod quadrature rule is the combination of two
quadrature results. We first evaluate I with a Gauss quadrature rule of n points, it could
be Gauss-Legendre or Gauss-Jacobi for example. Then we evaluate I with the first n
points and with n + 1 Kronrod’s rule points. So both approximations have n common
nodes:

I ≈ G(n) :=

n∑
i=1

wG
i f ◦ x(yGi ), I ≈ K(2n+1) :=

2n+1∑
i=1

wK
i f ◦ x(yKi ).

Then if the absolute difference between G(n) and K(2n+1) is above a pre-defined tolerance
threshold, we split the intergation interval in two equal parts. We can do the computation
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FFT methods Quadrature methods

FFT FFTOTM HESTON ATTARI

FFT algorithm GAUSS-LAG. GAUSS-LAG. GAUSS-KRON.

NumPy NumPy NumPy SciPy

fft() laggauss() laggauss() quad vec()

N = 4096 N = 180 N = 180 2n+ 1 = 21
α = 1.5 tol. = 1e− 9
h = 0.25

Table 2.1: Different numerical methods implemented for each formula.

of G(n) and K(2n+1) on both parts and so on until we reach the threshold. This confirmed
the adaptive nature of this method. In our case we have decided to use a Gauss-Kronrod
adaptive 21-points rule, which means that we compute during each iteration G(10) and
K(21). We have also chosen an arbitrary absolute tolerance of 10−9. We have used Python’s
package SciPy to use quad vec() method as it is already implemented and in a convenient
way that we will discuss later. We propose the table 2.1 to recap all numerical methods
implemented with parameter choice and according to our theoretical formula. The method
laggaus() allows us to have access to nodes and weights of Gauss-Laguerre quadrature rule,
we then compute the sum as it is presented above. Whereas with fft() and quad vec()
methods we used built-in functions to obtain an approximation by either giving a vector
which corresponds to discrete Fourier transform for fft() or a callable Python’s function
for quad vec().

However, we need to underline the fact, as stated before, that FFT methods compute
prices for a range of strikes predetermined by our numerical value of N . Issues are met
as soon as we try to answer to the question: how can we compare FFT and quadrature
methods?

In fact, the first problem is that comparison is impossible at this step because of
the methods themselves: for a call to our pricing method with Heston formula we have
a numerical value whereas with FFT formula we have a set of prices that matchs log-
strike’s calculation grid of the method. So both methods don’t return the same thing, and
consequently aren’t comparable at least in the algorithmic and complexity point of view.

On one hand, to tackle this problem we have decided to use a vectorize approach of
our code. The idea is that given a set of maturities, a set of strikes and eventually a term
structure of the risk-free interest rate of the market, we are able, independently from the
method, to return a surface of european vanilla options prices. For example with FFT
methods, the entry vector is replaced by a matrix with each row i refering to a discrete
Fourier transform according to maturity Ti. In the case of quadrature methods we can
also perform numerical intergation simultaneously for each element (Ti,Kj) of the matrix,
which is very simple by using quad vec().

On the other hand, now that we compute a surface of prices we still can’t compare
numerical results as FFT algorithm has his own (log-) strikes grid to perform well. This
incurs to compare two surfaces of different dimensension. Our approach was to build a
linear dependence between each prices of the FFT grid in order to compute interpolated
price associated to any grid of strikes. With this solution by providing the same set
of option’s caracteristics, we obtain a well-sized surface of prices either with FFT or
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quadrature methods.

Since diffusion and vanilla pricing methods have been presented, we introduce, in this
more practical section, the code environment where all these methods have been developed.
Exiom’s quantitative library named FinX is a Python’s module developed in Python by
the quantitative team. Various models and tools have already been implemented to cope
with several issues from pricing derivatives to curve stripping for example. A large part
of the library is usable, and we aim through this work to add the Heston model and its
tools as a new content for users. We propose a representation of the library’s architecture
with figure [2.1].
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Figure 2.1: Overview of Exiom’s quantitative library FinX.

A qualitative test is then to compare our code for the four formulas to results of well-
known open source quantitative library Quantlib ([18]). We create surfaces of prices for
four expiries and for each formula. We are able through an inversion method to obtain
surfaces of implied volatilities. Through Quantlib we can also obtain a surface of implied
volatilities associated to a Heston model. We repeat this for different numerical values of
our model’s parameters and we compare the surface on four maturity slices: 1 month, 6
months, 1 year and 2 years. Results are presented in figure [2.2].

On figure [2.2] only Gauss-Laguerre quadrature rule is used. We observe on this figure
that FFT methods are less robust on small expiries, where the convexity is higher. We
can also notice some irregularities due to the linear reconstruction. Results are in overall
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Figure 2.2: Comparison between FinX implemented formulas and Quantlib with r = 0.0
and S0 = 100.

satisying as we succeed in matching Quantlib surface.

2.3 Calibration methods

Generating prices of european vanilla options with our model’s parameters is feasible
and it has been developed in sections above. Then again if we are concerned by modeling
questions, we aim to find numerical values for our model’s parameters that reflect market
behaviour. This is done by using quoted and observed market prices of options and by
comparing with model’s prices in an optimization procedure.

According to literature several methods can be used, and we have been interested
in results obtain by Mikhailov and Nögel (see [19]) and Cui and al. (see [20]), as well
as heuristics proposed in [21]. Among particularities exposed in these references, we
can remark that authors preference is to create an optimization procedure on implied
volatilities instead of using directly market’s and model’s prices. Note that price and
implied volatility are directly linked with Black-Scholes formula so both problems are
equivalent. An answer to this choice lies in the fact that a small difference between two
implied volatilities induces a larger gap between the two associated prices. We have also
done this choice in such a way that in this section we aim to solve a minimization problem
with the following objective function:

min
Θ∈S
J (Θ) =

∑
t

∑
k

ϑBS(Kk, Tt)
(
σmarket
implied(Kk, Tt)− σmodel

implied(Θ;Kk, Tt)
)2
, (2.8)

where Θ is the vector of model’s parameters, ϑBS is the Black-Scholes Vega, σmarket
implied is

the implied volatility of a market price, so the target and σmodel
implied is the implied volatility

of a model price. The Black-Scholes Vega is used as a weighting function. As we aim
at replicating liquid options, in our case european vanilla options, we prefer to reduce
uncertainty of the price given by our model for near ATM options than to well replicate
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far OTM options. This is exactly the behaviour of the Vega as it is never higher than the
Vega of the related ATM option. Also, unless otherwise stated, we will define J on the
whole surface. It is a choice that could be criticized as long as we know with [4] that it
is hard to fit the observed surface for short expiries. It is also mentionned in [21] that we
can often fix a maturity, in the definition of J to obtain better results for calibration, and
this is an alternative that can be explored. This discussion is the consequence of the lack
of knowledge about J convexity on the space of all possible Θ. For this reason, we can’t
justify the existence and uniqueness of a global minimum Θ∗.

In the absence of theoretical results to solve problems like (2.8), it could be complicated
to find in practice one or several local minimums that could be great candidates to be a
global minimum. A possibility is to start by restraining the space of search S and this is
discussed in [20] and in [21]. If we consider that Θ := (ν0, κ, θ, σ, ρ)

T then S is defined
as ]0; 1] × R+×]0; 1] × R+ × [−1; 0] for equity options for example. A heuristic proposed
in [21] is to estimate ν0 parameter by the square of the implied volatility of the most ATM
observable options. It is an interesting estimation because we have seen in §1.1, that ν0
influences the level of the smile, and this is an alternative choice that we have made. Note
that other estimations are mentionned in [20], but it can highly depend on market and
data. Thus in practice in the following S is a subset of R4 with the mentionned estimation
of ν0, and by defining Θ̃ := (κ, θ, σ, ρ)T it leads to the following problem:

min
Θ̃∈R+×]0;1]×R+×[−1;0]

J (Θ̃) =
∑
t

∑
k

ϑBS(Kk, Tt)
(
σmarket
implied(Kk, Tt)− σmodel

implied(Θ̃;Kk, Tt)
)2
.

(2.9)
Now that we have introduced theoretical issues, we want to detail our calibration procedure
in practice. We agreed on following the choice of Mikhailov and Nögel which is to use
a stochastic optimization algorithm to find a good initial guess of an optimal candidate
and then use this candidate as the initial guess of a local optimization algorithm. This is
done to tackle one of the main drawbacks of a local algorithm: it is highly dependent of
the starting value. As an example for some very oscillating functions starting from two
diffent values can leads to two different local minimum by gradient descent. A stochastic
optimization helps in order to start at a better initial point, however it costs a lot of
computational time as it explores a large number of paths and points.

FinX library has a dependency with SciPy so we have decided to use built-in algorithm
of this module. Our stochastic optimization will be performed by an implementation of
Differential Evolution algorithm. For the local optimization we will provide results based
on two different algorithm: Nelder-Mead algorithm and Trust-region Reflective algorithm.
We provide a pseudo-code algorithm that explains our calibration procedure.

Algorithm 1 (Calibration of the Heston model)

1. Estimation of parameter ν0
2. ΘDE ← Differential Evolution over the bounded problem (2.9)
3. Θ∗ ← Nelder Mead or Trust Region Reflective over the bounded problem (2.9) with
initial starting value ΘDE .
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Chapter 3

Calibration numerical results

In this chapter we present calibration results. The first section is about testing cali-
bration procedure on observed data generated from a Heston model. Bias of our model
are presented in the second section. As soon as we introduce real market data, we have
to cope with phenomena that incur a loss of precision in our calibration procedure.

3.1 Tests cases with a generated surface of price

For this test cases, we generate a surface of prices with a Heston model and the Attari
formula with a Gauss-Kronrod quadrature. This means that σmarket

implied are in this case
σimplied of a target model. In fact we have built surfaces of prices for two sets of parameters:

dataset 1 ν0 = 0.05 κ = 0.5 θ = 0.05 σ = 0.2 ρ = −0.4
dataset 2 ν0 = 0.05 κ = 3.0 θ = 0.05 σ = 0.4 ρ = −0.57

For each model, we generate a surface with the same caracteristics: time and strike grids
are fixed to create a surface of 150 options and market parameters, spot S0 = 100 and
risk-free rate r = 0.01, are constant. Our purpose is then to find out which computation
method is better to meet by the calibration procedure the above parameters. Note that,
in this section and because we use generated data, we set ϑBS(Kk, Tt) = 1, ∀k, ∀t.

We have decided to compare the Heston formula computed with Gauss-Laguere quadra-
ture rule, the Attari formula computed with Gauss-Kronrod quadrature rule and both FFT
methods. To evaluate the performance of our formulas, we have defined three measures of
interest:

MSE(Θ∗) :=
1

NkNt

Nt∑
t=1

Nk∑
k=1

(
σmarket
implied(Kk, Tt)− σmodel

implied(Θ
∗;Kk, Tt)

)2
,

RMSE(Θ∗) :=
√
MSE, and

MAE(Θ∗) := max
(k,t)
|σmarket

implied(Kk, Tt)− σmodel
implied(Θ

∗;Kk, Tt)|.

We present results with standard deviation, based on a twenty values set, as stochastic
algorithm may provide different local minimums between each execution. Unless stated
otherwise this will be the case for each calibration results presented. To see differences
obtain with each local optimization algorithm, we decide to execute calibration with Trust
Region Reflective algorithm for the market generated with the first dataset and we use
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Nelder-Mead algorithm for the market generated with the second dataset. A methodology
of our tests is proposed with algorithms 2 and 3.

Algorithm 2 (Test case with dataset 1)

for p = 1,...,20 do
1. Θ∗,p ← Calibration procedure with Trust Region Reflective and ϑBS(Kk, Tt) = 1
2. MSEp, RMSEp,MAEp ← Compute measures with Θ∗ = Θ∗,p

end for
Θ∗ ← 1

20

∑20
p=1Θ

∗,p

MSE ← 1
20

∑20
p=1MSEp

RMSE ← 1
20

∑20
p=1RMSEp

MAE ← 1
20

∑20
p=1MAEp

Algorithm 3 (Test case with dataset 2)

for p = 1,...,20 do
1. Θ∗,p ← Calibration procedure with Nelder Mead and ϑBS(Kk, Tt) = 1
2. MSEp, RMSEp,MAEp ← Compute measures with Θ∗ = Θ∗,p

end for
Θ∗ ← 1

20

∑20
p=1Θ

∗,p

MSE ← 1
20

∑20
p=1MSEp

RMSE ← 1
20

∑20
p=1RMSEp

MAE ← 1
20

∑20
p=1MAEp

For the market generated with dataset 1, results are presented in tables 3.1 and 3.2,
and also through figure [3.1]. We recall that target prices are generated with the Attari
formula and Gauss-Kronrod quadrature rule. According to table 3.1, it is with this formula
that we obtain optimal parameters that are the closest from target values. However, we
note that Heston formula provides the best results in table 3.2. We can also underline
poor performance of FFT methods. Parameters obtained with FFT formula largely differ
from market values and even if numerical values obtained with FFTOTM are closer, the
formula isn’t as robust as formulas computed with a quadrature rule (see table 3.2).

The overall behaviour that we observe with calbiration results over dataset 1 is that
MAE value is reached, for each formula, for points with the smallest maturity, except for
FFTOTM formula whose associated point has the greatest maturity.

For the market generated with dataset 2, results are presented in tables 3.3 and 3.4,
and also through figure [3.2]. Remarks made about dataset 1 are still valid for dataset 2.
Attari’s formula provides the closest set of parameters but it needs to be balance with the
fact that market prices have been generated with this formula. And as a matter of fact we
still have better results on our measures with the Heston formula. We still show the lack
of robustness of FFT methods, but we can underline the fact that standard deviation is
lower in tables 3.3 and 3.4 than in tables 3.1 and 3.2. Further development will be focused
on determining whether this values stability is a consequence of Nelder-Mead algorithm
or a model dependent result.

A satisying observation is that in both cases we have exploitable results. Particularly
with a quadrature rule, we are able to estimate a target surface with a mean-square error
from 28 to 112 basis points over 150 option prices and with a maximum absolute error
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HES-GL ATT-GK FFT FFTOTM

ν0 0.04940 0.04940 0.04940 0.04940

κ 0.39956 0.39993 1.0145 0.37873

(s.d.) κ 2.6703e− 3 2.5537e− 3 3.230e− 2 8.8173e− 2

θ 0.05184 0.05184 0.04968 0.05600

(s.d.) θ 6.8424e− 5 6.3788e− 5 2.4134e− 4 2.0739e− 2

σ 0.19375 0.19381 0.29736 0.18380

(s.d.) σ 2.6902e− 4 3.6653e− 4 1.5490e− 3 7.1816e− 3

ρ −0.39375 −0.39373 −0.36475 −0.40304
(s.d.) ρ 2.2849e− 4 2.0591e− 4 1.7627e− 3 5.5450e− 3

Table 3.1: Optimal parameters values for dataset 1.

HES-GL ATT-GK FFT FFTOTM

MSE 28.18 28.19 1370 82.75

(s.d.) MSE 0.026 0.031 6.823 80.17

RMSE 5.309 5.309 37.01 8.577

(s.d.) RMSE 0.002 0.003 0.092 3.031

MAE 14.50 14.48 107.7 22.40

(s.d.) MAE 0.154 0.187 0.275 7.041

Table 3.2: Values of different measures for dataset 1 in basis points (bps).

from 14 to 35 basis points. Now we can wonder if we can obtain satisying results with
these procedure on real market data?

HES-GL ATT-GK FFT FFTOTM

ν0 0.04827 0.04827 0.04827 0.04827

κ 2.6169 2.6178 4.9999 2.4061

(s.d.) κ 1.921e− 3 2.161− 3 1.02e− 4 2.446e− 2

θ 0.05075 0.05075 0.05075 0.05061

(s.d.) θ 4e− 6 4e− 6 6.4e− 5 2.4e− 5

σ 0.37834 0.37847 0.68520 0.34313

(s.d.) σ 1.20e− 4 1.36− 4 2.752e− 3 2.103e− 3

ρ −0.56003 −0.56004 −0.53483 −0.57206
(s.d.) ρ 3.0e− 5 3.0e− 5 1.325e− 3 3.94e− 4

Table 3.3: Optimal parameters values for dataset 2.
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Figure 3.1: Comparison between formulas for calibration procedure over dataset 1.

HES-GL ATT-GK FFT FFTOTM

MSE 112.7 112.7 3832 247.7

(s.d.) MSE 0.003 0.003 1.302 8.882

RMSE 10.62 10.62 61.90 15.73

(s.d.) RMSE 1.3e− 4 1.5e− 4 0.0105 0.2821

MAE 34.87 34.82 221.6 51.36

(s.d.) MAE 0.050 0.051 0.027 1.607

Table 3.4: Values of different measures for dataset 2 in basis points (bps).

3.2 Results on CAC40 Index

Due to results observable in §3.1, we want to evaluate how calibration performance is
affected when we use real market data. In this section, σmarket

implied is the implied volatility of
CAC40 Index from the 21st July 2023. Data are provided by Bloomberg as well as strikes
and maturities of the surface. We have also access to spot S0 = 7425.94 and its forward
values with respect to each maturity. This allows us to implicit the term-structure of the
risk-free rate.

Thus our surface is composed with 16 maturities, from 1 month to 10 years, and 40
strikes. Initially we have access to 18 maturities, from 1 week to 10 years but we have
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Figure 3.2: Comparison between formulas for calibration procedure over dataset 2.

decided to delete 1 and 2 weeks data from our calibration procedure because of numerical
instability in our computation of model’s vanilla price.

We use the same procedure as mentionned in algorithms 2 and 3 to compare both
local optimization methods over the same dataset but with this time a real computation
of ϑBS(Kk, Tt). Results are presented in tables 3.6, 3.7, 3.8 and 3.7. We also show the
absolute relative error of each surface with the market surface with figures [3.3] and [3.4].

We remark that with Nelder-Mead algorithm we have better approximations of param-
eters. By better we mean that according to tables 3.6 and 3.7 standard deviation of values
are lower with Nelder-Mead algorithm. Moreover this is also with this algorithm that we
obtain the lowest error values according to tables 3.8 and 3.9 and figures [3.3] and [3.4].

Regression can also be evaluated with the computation of the coefficient of determi-
nation of each model using the mean values previously computed. Results are presented
in table 3.5. Although absolute relative error is higher in average with FFT methods,
according to figures [3.3] and [3.4], R2 values are very close especially for Nelder-Mead
algorithm.

Overall, calibration results confirm observation made in §3.1. Formulas using a quadra-
ture rule outperform FFT methods. It is also indisputable that Nelder-Mead algorithm’s
performance is better than Trust Region Reflective. Nevertheless we can wonder if a mean-
square error of nearly 653 basis points over the whole surface and a maximum absolute
error of 134 basis points are acceptable?
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Several approximations can be made in order to build an interpolated surface on a
thiner grid in order to avoid granularity and to increase calibration performance. This is
the object of the next chapter.

HES-GL ATT-GK FFT FFTOTM

R2 with Trust Region Reflective 0.9768 0.9766 0.9661 0.9668

R2 with Nelder-Mead 0.9869 0.9869 0.9830 0.9830

Table 3.5: Coefficient of determination with optimal parameters values over CAC40 Index
data.

HES-GL ATT-GK FFT FFTOTM

ν0 0.01880 0.01880 0.01880 0.01880

κ 1.2197 1.2215 1.2152 1.2051

(s.d.) κ 2.394e− 2 2.495e− 2 2.605e− 2 3.253e− 2

θ 0.05023 0.05023 0.05054 0.05057

(s.d.) θ 7.631e− 5 8.626e− 5 1.112e− 4 1.041e− 4

σ 0.67932 0.68075 0.70585 0.70024

(s.d.) σ 1.323e− 2 1.391e− 2 1.539e− 2 2.134e− 2

ρ −0.62940 −0.62891 −0.60449 −0.60514
(s.d.) ρ 1.972e− 3 2.289e− 3 3.515e− 3 3.467e− 3

Table 3.6: Optimal parameters values for CAC40 Index with Trust Region Reflective
algorithm.

HES-GL ATT-GK FFT FFTOTM

ν0 0.01880 0.01880 0.01880 0.01880

κ 1.0822 1.0816 1.0365 1.0368

(s.d.) κ 2.931e− 3 3.278e− 3 4.402e− 3 3.368e− 3

θ 0.05137 0.05138 0.05195 0.05194

(s.d.) θ 2.374e− 5 1.6016e− 5 2.513e− 5 2.688e− 5

σ 0.61776 0.61743 0.62053 0.62063

(s.d.) σ 1.263e− 3 1.713e− 3 2.346e− 3 1.609e− 3

ρ −0.66082 −0.66084 −0.63914 −0.63915
(s.d.) ρ 1.46285e− 4 1.9535e− 4 1.833e− 4 1.447e− 4

Table 3.7: Optimal parameters values for CAC40 Index with Nelder-Mead algorithm.
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HES-GL ATT-GK FFT FFTOTM

MSE 1091 1101 1540 1511

(s.d.) MSE 45.10 54.06 108.3 122.0

RMSE 33.02 33.17 39.22 38.85

(s.d.) RMSE 0.683 0.811 1.373 1.532

MAE 181.1 181.9 215.1 213.2

(s.d.) MAE 3.380 4.172 6.789 7.619

Table 3.8: Values of different measures for CAC40 Index with Trust Region Reflective
algorithm in basis points (bps).

HES-GL ATT-GK FFT FFTOTM

MSE 653.4 653.1 817.2 817.1

(s.d.) MSE 1.452 1.838 4.124 2.812

RMSE 25.56 25.56 28.59 28.58

(s.d.) RMSE 0.028 0.036 0.072 0.049

MAE 134.3 134.2 160.9 160.9

(s.d.) MAE 0.333 0.474 0.578 0.388

Table 3.9: Values of different measures for CAC40 Index with Nelder-Mead algorithm in
basis points (bps).
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Figure 3.3: Absolute relative error of each point for each formula Heston-GL, Attari-GK,
FFT and FFTOTM from left to right with Trust Region Reflective algorithm.
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Figure 3.4: Absolute relative error of each point for each formula Heston-GL, Attari-GK,
FFT and FFTOTM from left to right with Nelder-Mead algorithm.
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Chapter 4

Improvement of calibration results

In this chapter, we aim at investigating the benefits of new calibration procedures. We
first present a methodology to interpolate prices from market data. The idea is that by
adding points we can create a surface which is smoother and may be easier to fit. The
calibration procedure is modified and results are presented in the second section. We have
also investigated the use of variance swaps. Although these product aren’t vanilla options,
it helps to get information on market’s future variance. A future variance that can be used
as a target for the future variance of our model. It induces also a new calibration procedure
which is presented in details as well as results in the third and the fourth sections of this
chapter.

4.1 Stochastic volatility inspired (SVI)

In this section we present the Stochastic Volatility Inspired parametrization. First
introduced in [4], this model aims at explaining the volatility smile for each quoted matu-
rities, with the formula:

σ2implied(k) := a+ b
(
ρ(k −m) +

√
(k −m)2 + σ2

)
, (4.1)

with k the log-strike value and a, b, ρ, σ and m are maturities dependent parameters.
With some change of variables, this formula is equivalent to parametrization presented
in [22]. The crucial point in our work with equation (4.1) is that given market’s fitted
parameters, we can get the value of the implied volatility of an unquoted option. We can
therefore create a market-like smile with more points. The question now is the following:
does a generated point from (4.1) respect market’s behaviour? Or more generally, does
SVI model prevent from static arbitrage? This question is highly sensitive in our work
as we want to use an interpolated SVI surface as a target for our model in a further
calibration procedure.

In the following, we introduce some key points established in [22] in order to answer
that question. We can start by recalling the definition of a surface which is free of static
arbitrage given by Gatheral and Jacquier.

Definition 3. A volatility surface is free of static arbitrage if and only if the following
conditions are satisfied:

(i) It is free of calendar spread arbitrage.

(ii) Each time slice is free of butterfly arbitrage.
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Definition 4. A volatility surface σ is free of calendar spread arbitrage if

∂t
(
σ2implied(k, t)t

)
≥ 0, ∀(k, t) ∈ R× R∗

+.

where k is the log-moneyness.

Definition 5. A smile is said to be free of butterfly arbitrage if the corresponding density
is non-negative.

In order to observe whether there is butterfly arbitrage or not, we prefer to study, as
mentionned in [22], the following function g with the result given by the lemma 2:

g(k) :=

(
1− kw′(k)

2w(k)

)2

− w′(k)2

4

(
1

w(k)
+

1

4

)
+
w′′(k)

2
, (4.2)

with

w(k) := tσ2implied(k, t), w
′(k) = t

(
bρ+

k −m√
(k −m)2 + σ2

)
, w′′(k) =

tσ2

((k −m)2 + σ2)
3
2

.

Lemma 2. A smile is free of butterfly arbitrage if and only if g(k) ≥ 0 ∀k ∈ R and
limk→+∞ d+(k) = −∞.

However the work of Jacquier and Gatheral doesn’t lead to theoretical bounds on
parameters that prevent from butterfly arbitrage, we can still estimate the associated
density to conclude about positivity. We can also observe the absence of calendar spread
arbitrage by showing that the quantity σ2implied(k, t)t increases with t. Typically we take
σimplied like the SVI model that fit market data and we can draw curves for each quoted
maturities t.

We can now introduce the adjustment procedure, that we will have to repeat. In fact,
if we have 8 quoted maturities, we will have 8 SVI model, one for each smile. We also use
a mix between Differential Evolution and Nelder-Mead algorithm to fit each mid smile,
which can be rewritten as:

min
Λ∈P
J (Λ) =

∑
k

(
σmarket
implied(Kk, Tt)− σmodel

implied(Λ;Kk, Tt)
)2
, ∀t. (4.3)

where Λ := (a, b, ρ, σ,m) and the square of σmodel
implied can be written as (4.1). With our

previous market data on CAC40 index from the 21st July 2023, we can adjust each SVI
smile with mid data along each quoted maturities. Results are presented in figure [4.1].

Note that we have also specified bid and ask implied volatilities. A prerequisite for our
model is to behave like a mid price, since we use mid implied volatilities, so our curve needs
to lay between bid and ask values. We observe that it is easier to respect this constraint
with large maturity. We can also remark that we don’t use maturities larger than a year
and a half due to liquidity consideration. We took the last quoted maturity where prices
are still certain and aren’t interpolated. Interestingly, even if our fitting procedure use a
stochastic algorithm, on this dataset, each parametrized smile is very robust, in the sense
that parameters values differ from 10−7 from an iteration to another.

Moreover, we want to investigate whereas our SVI smiles allow arbitrage or not. We
have represented along log-moneyness the total implied variance and the function g for
each smile (see figure [4.2]). We can now use previous definition and results to confirm
that our SVI smiles don’t provide calendar spread arbitrage as no line of total implied
variance is crossed. On the contrary our smiles allow butterfly arbitrage as the positivity
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Figure 4.1: Adjustment of the SVI smiles over mid price data on CAC40 index from the
21st July 2023.

of g depends on maturity: for larger maturities we cross the horizontal axis. This an
expected result in light of our previous remark about the work of Gatheral and Jacquier
and the abscence of theoretical bounds for parameters to preclude butterfly arbitrage.

CHAPTER 4. IMPROVEMENT OF CALIBRATION RESULTS 33



Calibration and simulation of the Heston model

1.0 0.8 0.6 0.4 0.2 0.0 0.2
log( K

S0
)

0.00

0.05

0.10

0.15

0.20
To

ta
l I

m
pl

ie
d 

Va
ria

nc
e

T = 0.01923
T = 0.03846
T = 0.08333
T = 0.16667
T = 0.41667
T = 0.66667
T = 0.91667
T = 1.16667
T = 1.41667

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
log( K

S0
)

8

6

4

2

0

2

4

6

8

g

T = 0.01923
T = 0.03846
T = 0.08333
T = 0.16667
T = 0.41667
T = 0.66667
T = 0.91667
T = 1.16667
T = 1.41667

Figure 4.2: Total implied variance of SVI model (left) and g function (right) for each
maturities along log-moneyness.

4.2 An interpolated surface: a new methodology for cali-
bration over the CAC40 Index data.
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Figure 4.3: From left to right the building process to create a smoother surface for cali-
bration.

In the section before, we have found nine different sets of numerical values, one for
each maturity, that allow us to produce values of σ2implied for unquoted log-strike k. These
values respect at least, the absence of calendar spread arbitrage. In the following we have
decided to use formula (4.1) to create a discrete grid between the two extreme quoted
strike values with a step of 25.0. We have then a thin discretization along strike values,
we can now wonder how to interpolate along maturities in order to create a surface?

This is not a real problem due to the fact quoted maturities will respect arbitrage-free
property through SVI parametrization. Between the two extreme quoted maturities, we
can build a dependency between each smile on a discrete grid with a step of one week. In
literature this dependency is often linear, this is also the choice that we have made. On
figure [4.3], we can see that these modifications help creating a smoother surface. To get
the last surface, we have only deleted the first week in order to adjust our surface model
on an implied surface with a first expiration date from one month long. This choice is
explained by two arguments. First we know from previous computation and from literature
(see [4]) that it is pointless to use short maturities in the calibration procedure. Second,
we have used the one month maturity as the first maturity of interest in §3.2, so it is
convenient to make this choice in order to compare results.
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We can now present our results from the calibration procedure. We use the same
technique as the one presented in §3.2, unless our target surface is now an interpolated
surface. Since we have shown in last chapter the superiority of quadrature methods over
FFT methods we have been interested in computing this calibration procedure with Heston
and Attari formulas with the Nelder-Mead algorithm. Results are presented in tables 4.1,
4.2 and 4.3. We have also represented the absolute relative error between our interpolated
surface and our model calibrated surface on figure [4.4].

HES-GL ATT-GK

R2 with Nelder-Mead 0.9914 0.9914

Table 4.1: Coefficient of determination with optimal parameters values over CAC40 Index
data using SVI interpolation.

HES-GL ATT-GK

ν0 0.016995 0.016995

κ 4.7012 4.6992

(s.d.) κ 3.777e− 3 8.630e− 3

θ 0.03569 0.03570

(s.d.) θ 4.2421e− 6 1.2662e− 5

σ 1.3274 1.3270

(s.d.) σ 8.0747e− 4 1.4181e− 3

ρ −0.6900 −0.6901
(s.d.) ρ 3.4291e− 5 5.4931e− 5

Table 4.2: Optimal parameters values for CAC40 Index with Nelder-Mead algorithm using
SVI interpolation.

HES-GL ATT-GK

MSE 1474 1474

(s.d.) MSE 0.40 1.41

RMSE 38.38 38.38

(s.d.) RMSE 5e− 3 1.8e− 2

MAE 222 222

(s.d.) MAE 0.267 0.328

Table 4.3: Values of different measures for CAC40 Index with Nelder-Mead algorithm
using SVI interpolation.

A striking difference comparing these results with results from section §3.2 is that we
more than doubled our mean-square error but we gain one percent on the coefficient of
determination (see tables 4.1 and 4.3). We have also increased the maximum absolute
error of about a hundred basis points. This could be explained by the fact that we used
more OTM strikes for this calibration procedure than in §3.2. As written before, for short
maturities and far OTM or far ITM strikes our model dependent pricing formulas lack of
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Figure 4.4: Absolute relative error of each point for formulas Heston-GL (left) and Attari-
GK (right) with Nelder-Mead algorithm.

robustness.

Moreover in this case, Heston’s formula and Attari’s formula lead to similar results.
We can still notice that Heston’s formula leads to an optimal set of parameters that is less
sensitive according to the standard deviation on table 4.3.

In the computational point of view, the procedure to interpolate market data doesn’t
have a significant impact on the calibration procedure. We can build the new surface out-
side regression algorithm and once for all. It increases memory complexity since the target
surface is thiner so the associated matrix is larger, and it also increases time complexity
of about 1 minute.

Even though we improve the coefficient of determination, the absolute relative error
maps are still consequent locally (see figure [4.4]). In order to reduce the absolute relative
error, we have been interested in changing the way of finding optimal parameters for our
model by using variance Swaps.

4.3 Variance Swaps

In this section, we are interested in an alternative calibration procedure. Literature
often suggest to decompose the calibration process using variance Swaps before vanilla
options. The aim of this section is to present the market information provided by this
volatility product and to show how suitable is its use for the Heston model calibration.
We begin by giving a definition of a variance Swap:

Definition 6. We define as variance Swap the variance product of payoff:

N(Vrealized − VK),

where N is the nominal, Vrealized is the market realized annual variance and VK is the
fixed variance of the Swap.

Therefore variance Swaps express views on future market’s variance, because the idea
is to trade the realized market’s variance for a fixed variance. If we suppose that market
variance will increase in the future, we want to buy a variance Swap, which means buying
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VK with the idea that at the swap date Vrealized − VK > 0. Symmetrically if we suppose
that market variance will decrease in the future, we rather want to sell a variance Swap
at price VK in order to have at the swap date VK − Vrealized > 0.

We haven’t provided details on the fact that the price of the variance Swap is exactly
VK . It comes from the fact that the Swap value is equal to zero at pricing date according
to arbitrage free assumption. As a consequence, we have that:

VK = E [Vrealized] . (4.4)

We then focus on computing VK . In the following, we consider that N is equal to one
and that our pricing date is now t = 0. We also consider a market with an underlying
wich follows a geometrical brownian motion diffusion with a time-dependent volatility
parameter σt:

dSt = σtStdWt.

In this case the realized variance over [0;T ] is exactly the average of σ2t values over [0;T ]
which leads to:

Vrealized =
1

T

∫ T

0
σ2t dt.

Using Ito lemma to the function ln(St) leads to an expression for σ2t that allows us to
write:

Vrealized =
2

T

[∫ T

0

dSt
St

dt+

∫ T

0
d ln(St)

]
=

2

T

[∫ T

0

dSt
St

dt+ ln

(
ST
S0

)]
. (4.5)

We denote as E the expected value under the risk-neutral measure. With the expres-
sion (4.4), we can write:

VK =
2

T
E
[∫ T

0

dSt
St

dt+ ln

(
ST
S0

)]
.

Using Fubini-Lebesgue’s theorem and the expected returns under the risk-neutral measure
we finally have:

VK =
2

T

[
rT + E

[
ln

(
ST
S0

)]]
.

The price of the variance Swap is therefore obtained by computing the expected value
term. This is often done in literature by using log-contract products. In fact the first right
hand side term can be expressed as −E

[
− ln(erT )

]
and we can expressed VK as the price

of a log-contract using the payoff decomposition of Carr and Madan (see [4]):

VK = − 2

T
E
[
ln

(
ST
FT

)]
=

2

T

[∫ 0

−∞
p(k)dk +

∫ +∞

0
c(k)dk

]
, (4.6)

with c(k) :=
C(FT e

k)

FT ek
, and p(k) :=

P (FT e
k)

FT ek
.

where k := ln( K
FT

) and C and P denote respectively Call and Put prices. In the following,
we consider that this price is already observable on the market. A well known marker of
this price is the V IX index. This is the volatility index associated to movements of log-
contracts over the S&P500 index (noted also SPX). It is defined as the straightforward
discretization of equation (4.6):

V IX2 =
2

T

∑ ∆Ki

Ki
Qi(Ki)−

1

T

[
F

K0
− 1

]2
, (4.7)
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∆Ki =


K2 −K1 if i = 1,

KN −KN−1 if i = N,

(Ki+1 −Ki−1)/2, else.

Qi(Ki) =


P (T,Ki) if Ki < K0,

C(T,Ki) if Ki > K0,

(C(T,K0) + P (T,K0))/2, if Ki = K0.

with K0 := max1≤i≤N{Ki|Ki <= FT }.

4.4 A calibration methodology using future market variance

In this section, we show how we can use previous development about variance Swaps
to match future market’s variance with our model. We use market data on SPX and VIX
from the 16th August 2023. In the Heston model we know the law of the variance process
as stated in [6] and in [4]:

E [νT ] = θT +
1− e−κT

κ
(ν0 − θ) . (4.8)

Remark that with this expression the expected variance of the model only depends on
variance process parameters: the initialization value ν0, the mean reversion speed κ and
the long-term variance mean θ. Since the variance Swap is quoted in annualized variance,
we are therefore interested in comparing the annualized version of the expression (4.8) to
the expression (4.7). And by finding optimal parameters (ν∗0 , κ

∗, θ∗) we want to replicate
future market variance with our model through relationship (4.4):

1

T

(
θ∗T +

1− e−κ∗T

κ∗
(ν∗0 − θ∗)

)
= V IX(T )2. (4.9)

Relationship (4.9) can be seen as a major change in terms of calibration. In fact we
have now a way to estimate optimal parameters of the Heston model in two distinct steps:
we first look for values that satisfy equation (4.9), and then we look for σ and ρ values
with the implied volatility surface of SPX as we have done previously on CAC40 data.

We can apply the same procedure as the one presented in §2.3 but we expect a speed up
in computational time since we can now split our calibration problem over R5 in two cali-
bration problems over respectively R3 and R2. We then use the values obtained as starting
values for a local optimization on the whole parametrized surface, which means solving
problem (4.12). We solve successively problems (4.10), (4.11), and (4.12) as presented in
algorithm 4.

min
(ν0,κ,θ)∈]0;1]×R+×]0;1]

J1(ν0, κ, θ) =
∑
t

[
tV IX(t)2 − θt− 1− e−κt

κ
(ν0 − θ)

]2
. (4.10)

min
(σ,ρ)∈R+×[−1;0]

J (σ, ρ) =
∑
t

∑
k

1

s2

(
σmarket
implied(Kk, Tt)− σmodel

implied(ν
∗
0 , κ

∗, θ∗, σ, ρ;Kk, Tt)
)2
.

(4.11)

min
(ν0,κ,θ,σ,ρ)

J (ν0, κ, θ, σ, ρ) =
∑
t

∑
k

1

s2

(
σmarket
implied(Kk, Tt)− σmodel

implied(ν0, κ, θ, σ, ρ;Kk, Tt)
)2
.

(4.12)
where s denote the bid-ask spread between each option. This modification is similar as
using the vega Black-Scholes. In fact, we can observe that the spread is smaller for liquid
options than for illiquid options, thus by weighting with an inverse function of the spread
we insure to give more weight to near the money options than far in our out the money
options.
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Algorithm 4 (Calibration of the Heston model using VIX and SPX data)

1. ν∗0 , κ
∗, θ∗ ← Nelder Mead over the bounded problem (4.10).

2. σDE , ρDE ← Differential Evolution over the bounded problem (4.11).
3. ν⋆0 , κ

⋆, θ⋆, σ⋆, ρ⋆ ← Nelder Mead over the two bounded problems (4.12) with starting
set (ν∗0 , κ

∗, θ∗, σDE , ρDE).

We can note that the first calibration procedure is independent from the choice of
computation of european vanilla options. With a formal calculus software, we can also
note that the objective function of problem (4.10) is convex along all of its variable since
the Hessian matrix is positive semidefinite on the specified domain. Therefore there exist
a unique set of parameters that solves the above problem. This justifies the use of only
one local minimizer Nelder-Mead since by gradient descent we can only find the global
optimum. The adjusted model that matches future market’s variance is presented in
figure [4.5], as well as future model’s variance after minimizing problem (4.12). Since SPX
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Model variance HESTON-GL | 0 = 0.02479, = 4.8104, = 0.04949
Model variance ATTARI-GK | 0 = 0.02514, = 5.67121, = 0.04804
Model variance initialization | 0 = 0.02151, = 9.01731, = 0.04771
Future market variance

Figure 4.5: Adjusted model on market future variance (tV IX2).

index is very liquid, we have quoted prices for options far out-of-the-money or far in-the-
money. This result in calibrating our model where the analytical formula numerically fails
to give a price, and this problem is presented in figure [4.6]. Therefore we have decided
to delete strikes above and below an absolute value of the at-the-money forward of 50.
We present the results in tables 4.4, 4.5 and 4.6 as well as the absolute relative error in
figure [4.7].

HES-GL ATT-GK

R2 with Nelder-Mead 0.9446 0.9572

Table 4.4: Coefficient of determination with optimal parameters values over SPX Index
data using variance Swaps.

The first observation that could be made is the obvious difficulties to get efficient results.
A mean-square error of 28000 or 22000 basis points is beyond compare with the results
obtain with CAC40 data. This helps also to reconsider the coefficient of determination as
a criterion of decision concerning model choice: it is still very high whereas mean-square
error as well as maximum absolute error have increased a lot comparing to SVI results on
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50 0 50 100 150
ATMF (%)

0.0

0.2

0.4

0.6

0.8

IV
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model Attari-GK [ 0 = 0.02151,  = 9.01731,  = 0.04771,  = 3.0234,  = -0.65663]
model Heston-GL [ 0 = 0.02151,  = 9.01731,  = 0.04771,  = 3.42197,  = -0.60337]
market SPX

Figure 4.6: Illustration of the lack of robustness of the Heston and Attari formulas.

HES-GL ATT-GK

ν0 0.02479 0.02514

κ 4.8104 5.6712

(s.d.) κ 0.0402 0.0387

θ 0.04948 0.04804

(s.d.) θ 1.06e− 4 6.26e− 5

σ 1.8465 2.0997

(s.d.) σ 6.722e− 3 8.566e− 3

ρ −0.6917 −0.6741
(s.d.) ρ 2.82e− 4 2.83e− 4

Table 4.5: Optimal parameters values for SPX Index with Nelder-Mead algorithm using
variance Swaps.

HES-GL ATT-GK

MSE 28017 22154

(s.d.) MSE 63.315 88.773

RMSE 167.38 148.84

(s.d.) RMSE 0.1891 0.2982

MAE 1034 889.7

(s.d.) MAE 2.039 2.976

Table 4.6: Values of different measures for SPX Index with Nelder-Mead algorithm using
variance Swaps.

CAC40 data. However, against what we have seen in the above results, it is the Attari
formula that provides the best fit to our market surface. We can see on table 4.6, a
range of about 6000 basis points between each model’s surface which is consequent. Note
also that we have a better coefficient stability with this formula according to table 4.5.
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Figure 4.7: Absolute relative error of each point for formulas Heston-GL (left) and Attari-
GK (right) with Nelder-Mead algorithm.

Moreover, on figure [4.5], this is also the formula that leads to the best fit according to
market data and initialization values. These results may be also a consequence of using
the market’s spread as a weighting function in the calibration procedure and this could be
an axis to investigate. As a conclusion on this variance Swaps methodology, we can say
that the real upside of this method is the weak computational cost. As a reference the
mean computational time is about 12 times shorter than the mean computational time of
the SVI methodology.
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Chapter 5

Sensitivities computation in the
Heston model

In this chapter, we try to introduce issues linked to greeks and sensitivities computation
in the Heston model. Our work here is mainly driven by Paul Glasserman’s book (see
[23]) as well as the work of Mark Broadie and Özgür Kaya (see [24]). We aim also at
distinguishing option Greeks under a Black-Scholes framework and sensitivities of the
Heston model inputs. In the first section we introduce general Monte-Carlo methods for
the computation of sensitivities, as well as their downsides and benefits. The second
section provides details on the computation of option Greeks for the Heston model and
the studied scheme. Finally, in the last section, we present the issues that we have to
cope with in the Heston model in order to compute sensitivities with respect to the model
inputs.

5.1 A review of Monte-Carlo methods for the computation
of sensitivities

We are interested in introducing numerical methods to differentiate prices with respect
to some variable x:

∂θP (t = 0, x;ϕ(θ)) where, for simplicity, P is defined as P (t, x;ϕ(θ)) := Et

[
ϕ(Sx,θ

T )
]
.

In the above formulation, ϕ is the discounted payoff function and it could depend on sev-
eral intermediate values St, with t ∈ [0;T ] for path-dependent options especially. Indepen-
dently from specific methods associated to payoff’s properties, we can identify in literature
three different methods based on Monte-Carlo estimations: the Bump method, the Path-
wise approach and the Likelihood Ratio approach. We present here the difference between
each method and their applicability. In the following we define P (θ) := P (t = 0, x;ϕ(θ))
for conveniency.

The Bump method

The Bump method is an approach based on finite difference, and we aim at differenti-
ating Monte-Carlo estimators. It suggests a relative smoothness of the price function with
respect to θ input since we want to use a Taylor’s approximation. As a direct consequence
we can quantify the bias introduced by the finite difference estimator.
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To proceed, we suppose that we have computed the Monte-Carlo estimators P̂ (θ − ε)
and P̂ (θ+ ε) from two samples of equal size. Through smoothness property, we can write:

P (θ + ε) = P (θ) + ε∂θP (θ) +
ε2

2
∂2θθ +O(ε3),

P (θ − ε) = P (θ)− ε∂θP (θ) +
ε2

2
∂2θθ +O(ε3).

By denoting by ∆θ the centered approximation of ∂θP (θ), we therefore have that:

∆θ(ε) :=
1

2ε

(
P̂ (θ − ε) + P̂ (θ + ε)

)
.

Then we can wonder if this estimator is suited for the computation of ∂θP (θ)? From
the above relation we clearly have that ∆θ(ε) converges to ∂θP (θ) when ε goes towards 0.
We are interested in taking ε as small as possible, but considering the bias-variance trade
off specific to Monte-Carlo methods we are constrained in our choice. In fact, variance of
∆θ(ε) is proportional to 4ε−2 and it is clear that we increase uncertainty of our estimator
by taking smaller values. Note that if we build our estimators P̂ (θ − ε) and P̂ (θ + ε) not
from two samples but from one sample(

(ϕ(Sx,θ−ε
T ), ϕ(Sx,θ+ε

T ))i

)
0≥i≥n

,

so we compute both terms from the same set of m observations of ϕ(Sx,θ
T ), we get a

variance that is proportional to n−1 (see [10] and [23]). We have only presented here the
methodology for first order derivatives but we can do the same for second order derivatives.

The Pathwise approach

Contrary to the Bump method, with the Pathwise approach we use the parametriza-
tion of the diffusion process to differentiate with respect to parameters. Particularly this
method supposes that expectation and derivative are interchangeable. We present in the
following a result introduced in Glasserman’s book ([23]).

Theorem 1. If for all t ∈ [0;T ] the function θ 7→ Sx,θ
t is in C1 a.s., ϕ is Lipschitz and

E
[
supt≤T |∂θSx,θ

t |
]
<∞ then

∂θP (θ) = E
[
ϕ′(Sx,θ

T )∂θ

(
Sx,θ
T

)]
.

The proof of this theorem involves the application of the dominated convergence the-
orem. Through this result we notice that if we can compute the derivatives of the right
hand side term, we can build an unbiased estimator of ∂θP (θ). We can remark that the
upper result can be generalized to second order derivatives, and it is sufficient to consider
the Lipschitz criterion on ϕ′. However as an example, a digital option doesn’t satisfy this
condition since its first order derivative isn’t defined in the classical sense.

The Likelihood Ratio approach

Since the Pathwise approach is dependent of the payoff continuity, it might not be
applicable to all options. An alternative is the Likelihood Ratio approach and it is based
on the following computation:

∂θE [ϕ(Sx
T )] =

∫
Ω
ϕ(s)∂θ(pθ(s))ds =

∫
Ω
ϕ(s)

∂θ(pθ(s))

pθ(s)
pθ(s)ds = E

[
ϕ(s)

∂θ(pθ(s))

pθ(s)

] ∣∣∣
s=Sx

T

.
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We note that this approach also relies on the interchange of derivative and expectation
and if its holds we keep the unbiased property. As stated by Glasserman, this relationship
is often verified due to the smooth overall behaviour of density function. But we might
need an argument of absolute continuity on pθ to conclude that the following equalities
for first and second order derivatives hold:

∂θP (θ) = E
[
ϕ
∂θpθ
pθ

]
, ∂2θθP (θ) = E

[
ϕ
∂2θθpθ
pθ

]
.

As a final word on these methods we can say that even if the Bump methods can
be easily implemented because it requires no further computation, the bias induced by
its estimator can be a downside. As a consequence we do not cover finite difference
implementation in the next section.

5.2 Greeks in the Heston model

Through the above computation methods we aim at computing options Greeks as they
are defined in the Black-Scholes model. Since we approximate the law of the underlying of
our process, we can identify log-normal distribution conditionnally to the variance values.
Our work is largely inspired by the article of Broadie and Kaya (see [24]) but adapted to
the studied schemes introduced in section §1.2. In this section only we consider that P is
the fair price at time t = 0 of a Call option of maturity T and we want to compute the
below quantities:

∆ :=
∂P

∂S
, Γ :=

∂2P

∂S2
, Θ := −∂P

∂T
, ϑ :=

∂P

∂σ
.

In a GMB model, S denotes the spot value of the underlying and σ is the volatility param-
eter. The methodology proposed in [24] identifies the equivalent of the σ parameter in a
stochastic volatility framework and it can be extend to log-Euler, Quadratic Exponential
and E+M schemes. In fact, each scheme can be written like:

ST = Sξe

(
r−σ2

2

)
T+σ̄

√
TZ

(5.1)

ξ := e−
ρ2

2

∫ T
0 νsds+ρ

∫ T
0

√
νsdW ν

s and σ̄2 :=
(1− ρ2)

∫ T
0 νsds

T
.

If we consider that variance process values are known on a discrete time set t0 = 0 <
t1 < · · · < tM = T the variables ξ and σ̄ are known and constant and the approximation
of the underlying follows a log-normal distribution. Particularly, σ̄ will be the volatility
parameter used in the computation of ϑ. Note that the above expression and comments
can’t be done in the case of the Milstein scheme since we have a further development. We
would have the square of a standard gaussian variable and the approximated law would
no longer be log-normal. Therefore this methodology won’t be applied to the Milstein
scheme.

With the parametrized formula (5.1), it is then very convenient to apply the Pathwise
approach. And since we obtain a log-normal distribution the Likelihood Ratio approach
can also be used on the approximated law. In fact the distribution density g in the case
of (5.1) could be written (see appendix §A.4):

g(x) :=
f(k(x))

xσ̄
√
T

with k(x) :=
ln( x

Sξ )− (r − σ̄2

2 )T

σ̄
√
T

.

44 CHAPTER 5. SENSITIVITIES COMPUTATION IN THE HESTON MODEL



Calibration and simulation of the Heston model

where f is the probability density function of a standard gaussian variable. Now we can
wonder what are the differences between each scheme in the light of formula (5.1)? The
answer is in the computation of ξ and σ̄. Schemes as it has been introduced in §1.2 differ
from the approximation:

(Euler)

∫ ti+1

ti

νsds ≈ νtiT, (Quadratic Exponential, E+M)

∫ ti+1

ti

νsds =
T

2

[
νti + νti+1

]
.

An other difference is that the variance process is sample directly from the conditional law
in the Quadratic Exponential scheme whereas it is approximated by a Milstein scheme in
the E+M scheme. Now considering that we have a discrete collection (ν0, · · · , νM ), we
can compute an approximation of terms ξ and σ̄ through:

(Euler)

∫ T

0
νsds =

M∑
i=1

∫ ti

ti−1

νsds ≈
M∑
i=1

νti−1(ti − ti−1),

(Quadratic Exponential, E+M)

∫ T

0
νsds =

M∑
i=1

∫ ti

ti−1

νsds ≈
M∑
i=1

[
νti−1 + νti

] (ti − ti−1)

2
.

(Euler)

∫ T

0

√
νsdW

ν
s ∼ N

(
0,

M∑
i=1

νti−1(ti − ti−1)

)
,

(Quadratic Exponential, E+M)

∫ T

0

√
νsdW

ν
s ∼ N

(
0,

M∑
i=1

[
νti−1 + νti

] (ti − ti−1)

2

)
.

Now with (5.1) and the above details we can compute estimators for Pathwise and Likeli-
hood Ratio approaches. Calculation details are provided in appendix (see appendix §A.4),
and the estimators, in the absence of risk-free interest rate, are presented in the table 5.1.

Pathwise Likelihood Ratio

∆ E
[
ST
S 1ST≥K

]
E
[
(ST −K)+

∂Sg(ST )
g(ST )

]
∂Sg(ST )
g(ST ) := k(ST )

Sσ̄
√
T

Γ E
[
Kk(ST )

S2σ̄
√
T
1ST≥K

]
E
[
(ST −K)+

∂2
SSg(ST )

g(ST )

]
∂2
SSg(ST )

g(ST ) := k(ST )2−k(ST )σ̄
√
T−1

S2σ̄2T

Θ E
[
−
(
r − σ̄2

2 + σ̄Z
2
√
T

)
ST 1ST≥K

]
E
[
−(ST −K)+

∂T g(ST )
g(ST )

]
−∂T g(ST )

g(ST ) := 1
2T −

k(ST )
[
ln(

ST
Sξ

)+(r− σ̄2

2
)T

]
σ̄2T

√
T

ϑ E
[(
−σ̄T +

√
TZ
)
ST 1ST≥K

]
E
[
(ST −K)+

∂σ̄g(ST )
g(ST )

]
∂σ̄g(ST )
g(ST ) :=

k(ST )
[
ln(

ST
Sξ

)−(r+ σ̄2

2
)T

]
σ̄2

√
T

− 1
σ̄

Table 5.1: Monte-Carlo estimators for Pathwise and Likelihood Ratio approaches.

Since we have discussed about problems induced by the computation of digital options
with the Pathwise approach, we note that we have also a problem for the computation
of Γ. Hence, we compute this variable by differentiating with the Pathwise methodology
the ∆ Likelihood Ratio estimator. We have then computed estimators for several spot
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values with the following model ν0 = 0.04, κ = 2.0, θ = 0.04, σ = 0.6 and ρ = −0.69 and
with 100000 observations of ST . Results are presented in figures [5.1] and [5.2] for several
expiries and with a confident interval of 95%.

We observe that both methods allow us to obtain curves that match greeks in the
Black-Scholes model. We also notice that variance increases when the spot increases, even
if curves are smoother and with less variance with the Pathwise approach.
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Figure 5.1: Pathwise Greeks computation along spot values with K = 100, r = 0.0 and
for 3 different expiries with a confident interval of 95%.
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Figure 5.2: Likelihood Ratio Greeks computation along spot values with K = 100, r = 0.0
and for 3 different expiries with a confident interval of 95%.
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5.3 Issues relative to model inputs sensitivities

However in terms of risk management we prefer to estimate model sensitivities with
respect to its inputs. In the case of the Heston model it means computing also the partial
derivatives ∂ν0P, ∂κP, ∂θP, ∂σP, and ∂ρP .

Even if the methods introduced in this chapter can be used, their application can be
more challenging. For example if we refer to the absolute continuity required for the
Likelihood Ratio approach, we note that variance process isn’t continuous with respect to
its parameters κ, θ, σ and ρ due to the switching rule in the sampling.

We can also note the fact that computations of section §5.2, don’t hold since the variance
process needs to be known. Therefore analytical computation as it has been done above
can be slightly different and challenging. Moreover this was already compromised by the
fact that it can’t be adapted to the Milstein scheme.

Problems encountered and presented above have been tackled in the article written by
Jiun Chan, Mark Joshi and Dan Zhu (see [25]). The solution proposed use automatic
adjoint differentiation (AAD) and rely on the mapping between the model inputs and the
scheme, but the implementation of this method exceeds the purpose of this work.
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Conclusion

To conclude we have discussed about the Heston model and its suitability to replicate
market’s volatility behaviour. We have also highlighted the similarities with the Black-
Scholes framework. On the diffusion implementation we have more or less succeeded in
matching the results presented in the article [7].

We also compared methods using a quadrature rule and Fast Fourier transform methods
and in the light of our developement, we have observed the poor performance of the Fast
Fourier methods. Another interesting point concerns Attari and Heston formulas. Even if
we increase the bias of the approximation in Heston’s formula by using a second integral,
we haven’t perceived major differences with Attari’s formula.

Based on vanilla options prices we have proposed different methods to calibrate the nu-
merical value of each parameter. These methods present benefits and inconvenients that
need to be taken into account depending on the purpose. We have been interested in hav-
ing efficient numerical results on calibration but an in-depth study of the computational
complexity could also be a factor of interest for further developements. A possibility often
proposed in literature is to use a deep calibration procedure. In fact the lack of knowl-
edge on the objective function could be exploited by neural network and may outperform
classical methodologies presented in this report.

We have also presented issues related to sensitivities computation. Even if we succeeded
in finding adapted results for the computation of option Greeks, the computation of sen-
sitivities with respect to model inputs requires advanced techniques such as automatic
adjoint differentiation (AAD). The major upside of using AAD is to tackle payoff related
issues as well as parameters continuity.

Through this work we have also been able to show the limits of the Heston model.
Particularly we have seen that, due to numerical issues on the analytical formula, it might
be hard to obtain a calibrated model that fit the market for short expiries. Among tools
that can be used to correct this behavior we can suggest local volatility function or more
generally local stochastic volatility model, but we can wonder what is the cost to pay in
order to use this kind of model?

From a personnal point of view this internship helped me to improve my knowledge
in modeling volatility and issues related to model’s calibration. I enjoyed working on
this master’s thesis and discussing it with my supervisors and colleagues, whom, through
their knowledge and skills, turned this internship and work into a concrete continuity of
this year’s courses. This was also the opportunity to face a wide range of mathematical
modeling and quantitative finance related issues, and to reinforce my desire to work in the
industry. I am therefore very grateful to Exiom Partners for this opportunity.
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Appendix A

Calculation details

A.1 Pricing european options - Girsanov’s theorem appli-
cation

In this section, notations used are independent. To justify Girsanov’s theorem we set
an arbitrage-free framework and therefore justify the existence of at least one risk-neutral
measure. Problem (1.2) using Cholesky’s decomposition is equivalent to:

dSt = µStdt+
√
ν(t)StρdW

(2)
t +

√
ν(t)St

√
1− ρ2dW (1)

t

dν(t) = κ[θ − ν(t)]dt+ σ
√
ν(t)dW

(2)
t

d < W (1),W (2) >t= 0

. (A.1)

Let Qλ be a risk neutral measure. Transition from physical probability to risk-neutral
probability can be realized by reducing drift term from a factor λσ

√
ν(t). Girsanov’s

theorem set that:

dWQλ,2
t = dW

(2)
t + λdt.

with {WQλ,2
t }{t≥0} a Qλ brownian motion. S̃ is a Qλ-martingale, so necessarly with

Girsanov’s theorem we have:

dWQλ,1
t = dW

(1)
t +

µ− r − λρ
√
ν(t)√

ν(t)
√
1− ρ2

dt.

with {WQλ,1
t }{t≥0} a Qλ brownian motion independent de {WQλ,2

t }{t≥0}. The added term

is obtained by using dW
(2)
t expression in the diffusion of S in (A.1). Under risk-neutral

measure Qλ we have:
dSt = rStdt+

√
ν(t)StρdW

Qλ,2
t +

√
ν(t)St

√
1− ρ2dWQλ,1

t

dν(t) =
(
κ[θ − ν(t)]− λσ

√
ν(t)

)
dt+ σ

√
ν(t)dWQλ,2

t

d < WQλ,1,WQλ,2 >t= 0

. (A.2)

Or with correlated brownian motions:
dSt = rStdt+

√
ν(t)StdB

Qλ,1
t

dν(t) =
(
κ[θ − ν(t)]− λσ

√
ν(t)

)
dt+ σ

√
ν(t)dBQλ,2

t

d < BQλ,1, BQλ,2 >t= ρdt

. (A.3)
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We set the risk-neutral framework, so we can apply Ito’s lemma with diffusions under
Qλ as we do for a Black-Scholes’s model. Partial differential equation of Heston’s article
appears with a martingale argument on C̃. We could also use Feynman-Kac with the
equation (1.8) and Qλ the measure of calculus. Both cases leads to:

∂C

∂t
+

1

2
νS

∂2C

∂S2
+

1

2
νσ2

∂2C

∂ν2
+ νSσρ

∂2C

∂S∂ν
+ rS

∂C

∂S
+ [κ(θ − ν)− λσ√ν]∂C

∂ν
− rC = 0.

A.2 Semi-closed price formulation for european options

Proof. (Proposition 3)

Lemma 3. Considering f as the probability density function of X, Fourier transform is
exactly caracteristic function ϕ(z) := E[eizX ] and ∀x ∈ R:

Q(X > x) =
1

2
+

1

π

∫ +∞

0
Re
[
eizkϕT (z)

iz

]
dz.

Proof. (Lemma 1) First point is trivial with the definition of Fourier transform:

Ff(z) :=
∫ +∞

−∞
eizxf(x)dx.

Using probability density function, this is exactly the definition of caracteristic function,
so ϕ(z) = Ff(z). Note also that inverse Fourier transform gives:

f(x) :=
1

2π

∫ −ηi+∞

−ηi−∞
e−izxFf(z)dz = 1

2π

∫ −ηi+∞

−ηi−∞
e−izxϕ(z)dz.

Hence we can develop the following term using inverse Fourier transform:

Q(X > x) =

∫ ∞

x
f(y)dy,

=

∫ ∞

x

(
1

2π

∫ −ηi+∞

−ηi−∞
e−izyϕ(z)dz

)
dy,

=
1

2π

∫ −ηi+∞

−ηi−∞
ϕ(z)

(∫ ∞

x
e−izyϕ(z)dy

)
dz (Fubini-Lebesgue),

=
1

2π

∫ −ηi+∞

−ηi−∞

e−izx

iz
ϕ(z)dz.

Cauchy’s residue theorem, for any η > 0 leads to:∫ −ηi+∞

−ηi−∞

e−izx

z
ϕ(z)dz −

∫ ηi+∞

ηi−∞

e−izx

z
ϕ(z)dz = 2πi.

Or also:

1

2πi

∫ −ηi+∞

−ηi−∞

e−izx

z
ϕ(z)dz = 1 +

1

2πi

∫ ηi+∞

ηi−∞

e−izx

z
ϕ(z)dz.

By principal values (see [11]) we also have that:

lim
η→0+

(∫ −ηi+∞

−ηi−∞

e−izx

z
ϕ(z)dz +

∫ ηi+∞

ηi−∞

e−izx

z
ϕ(z)dz

)
= 2 lim

ϵ→0+

∫
(−∞,−ϵ)∪(+∞,+ϵ)

e−izx

z
ϕ(z)dz.
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Thus we get that:

1

πi

∫ −ηi+∞

−ηi−∞

e−izx

z
ϕ(z)dz = 1 +

1

2πi

(∫ −ηi+∞

−ηi−∞

e−izx

z
ϕ(z)dz +

∫ ηi+∞

ηi−∞

e−izx

z
ϕ(z)dz

)
.

And we can write:

Q(X > x) =
1

2
+

1

2πi
lim
ϵ→0+

∫
(−∞,−ϵ)∪(+∞,+ϵ)

e−izx

z
ϕ(z)dz,

=
1

2
+

1

π

∫ +∞

0
Re
[
e−izx

iz

]
ϕ(z)dz.

Applying previous lemma, first probability is clear since logarithm function is mono-
tonic. For the second probability, we still have: Q̃(ST > K) = Q̃(XT > K). Applying
directly the previous lemma helps to get an expression with a caracteristic function Q̃-
dependent. Nevertheless we can find a relationship between the caracteristic function with
respect to Q̃ and the caracteristic function with respect to Q. This is a simple application
of Bayes formula:

ϕ̃T (z) = Ẽ
[
eizXT

]
,

= Ẽ
[
νT e

izXT
1

νT

]
,

= E
[
νT e

izXT
]
,

=
1

E [eXT ]
E
[
eXT eizXT

]
,

=
ϕT (z − i)
ϕT (z)

.

For convenient purpose, we rewrite here the expression of the log-spot caracteristic
function:

ϕT (z) = eC(τ,z)θ+D(τ,z)ν(t)+iz(Xt+rT )

with τ := T − t where t denotes the valuation date, and

ω := −1

2
z(i+ z), y := κ− ρσiz, c :=

σ2

2
, p :=

√
y − 4ωc, y± :=

y ± p
2c

, g :=
y−
y+

C(τ, z) := κ

[
τy− −

1

c
ln

(
1− ge−pτ

1− g

)]
, D(τ, z) :=

1− e−pτ

1− ge−pτ
y−.

Proof. (Proposition 4) Let Ft := Ste
−rT . By definition:

ϕT (z) := E[eizXT ] = E[Siz
T ] (XT = ln(ST )),

= E[e−rT izSiz
T ]erT iz,

= E[F iz
T ]erT iz,

= Φ(0, F, ν)erT iz,
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with Φ(t, Ft, ν(t)) := E[F iz
T |Ft = F, ν(t) = ν]. Note that Φ(t, Ft, ν(t)) as a process sat-

isfies a partial differential equation associated to its martingale behaviour. An applica-
tion of Ito’s lemma to Φ(t, Ft, ν(t)) and a use of expectancy helps to detect it. Martin-
gales terms disapear, then the Tower formula and definition of Φ allow us to ensure that
Φ(t1, Ft1 , ν(t1)) = Φ(t2, Ft2 , ν(t2)) independently of the choice of t1 and t2. Thus we finally
have that:

∂tΦ+Aν,FΦ = 0,

with Aν,F = κ(θ − ν)∂ν + 1
2νF

2∂2F 2 +
1
2σ

2ν∂2ν2 + ρσνF∂2νF . We are looking for Φ with
an expression:

Φ(t, F, ν) = F iz
t e

C(τ,z)θ+D(τ,z)ν ,

since our Heston model is an affine Markovian diffusion process, with C(0, z)θ+D(0, z)ν =
0 to satisfy final condition. Finding functions C and D comes from satisfying this final
condition and the partial differential equation. As it is done in [11], we can inject this
form to get ordinary differential equation on C and D. We have that:

∂tΦ = [−∂τC(τ, z)θ − ∂τD(τ, z)ν] Φ, ∂νΦ = D(τ, z)Φ,

∂2ν2 = D(τ, z)2Φ, F∂FΦ = izΦ, F 2∂F 2Φ = iz(iz − 1)Φ,

and F∂2ν,FΦ = DizΦ.

Therefore we obtain the following equations:{
∂τC(τ, z) = κD(τ, z)

∂τD(τ, z) = c(D(τ, z)− y+)(D(τ, z)− y−)
. (A.4)

Note that the second one is a Riccati equation.

A.3 Advanced formulation of semi-closed price

We have seen that the following expression can be verify:

Q̃(ST > K) =

∫ +∞

l
ex
(

1

2π

∫ +∞

−∞
e−iωxϕT (ω)dω

)
dx,

= 2
1

4π

∫ +∞

−∞
ϕT (ω)

(∫ +∞

l
e−i(ω+i)xdx

)
dω (Fubini).

We denote as A := 1
4π

∫ +∞
−∞ ϕT (ω)

(∫ +∞
l e−i(ω+i)xdx

)
dω then we have, by decomposition

(Chasles):

Q̃(ST > K) = A+
1

4π

∫ +∞

−∞
ϕT (ω)

(∫ +∞

−∞
e−i(ω+i)xdx+

∫ −∞

l
e−i(ω+i)xdx

)
dω.

As it is recall above we have that Q̃(ST > K)|l=−∞ = 2 1
4π

∫ +∞
−∞ ϕT (ω)

∫ +∞
−∞ e−i(ω+i)xdxdω

but by definition of cumulative distribution function we have that Q̃(ST > K)|l=−∞ = 1.
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Therefore we can write that:

Q̃(ST > K) = A+
1

2
− 1

4π

∫ +∞

−∞
ϕT (ω)

(∫ l

−∞
e−i(ω+i)xdx

)
dω,

=
1

2
+

1

4π

∫ +∞

−∞
ϕT (ω)

(∫ +∞

l
e−i(ω+i)xdx

)
dω − 1

4π

∫ +∞

−∞
ϕT (ω)

(∫ l

−∞
e−i(ω+i)xdx

)
dω,

=
1

2
+

1

4π

∫ +∞

−∞
ϕT (ω)

[
1

−i(ω + i)
− e−i(ω+i)l

−i(ω + i)

]
dω,

− 1

4π

∫ +∞

−∞
ϕT (ω)

[
e−i(ω+i)l

−i(ω + i)
− lim

R→∞

ei(ω+i)R

−i(ω + i)

]
dω,

=
1

2
+

1

4π

∫ +∞

−∞
ϕT (ω)

[
lim

R→∞

e−i(ω+i)R

−i(ω + i)
− e−i(ω+i)l

−i(ω + i)

]
dω,

− 1

4π

∫ +∞

−∞
ϕT (ω)

[
e−i(ω+i)l

−i(ω + i)
− lim

R→∞

ei(ω+i)R

−i(ω + i)

]
dω,

=
1

2
− 1

2π

∫ +∞

−∞
ϕT (ω)

e−i(ω+i)l

−i(ω + i)
dω +

1

4π
lim

R→∞

∫ +∞

−∞
ϕT (ω)

[
e−i(ω+i)R

−i(ω + i)
+

ei(ω+i)R

−i(ω + i)

]
dω,

=
1

2
+

1

2π

∫ +∞

−∞
ϕT (ω)

e−i(ω+i)l

i(ω + i)
dω − 1

4π
lim

R→∞

∫ +∞

−∞
ϕT (ω)

[
e−i(ω+i)R + ei(ω+i)R

i(ω + i)

]
dω.

Let B defined as B := 1
4π limR→∞

∫ +∞
−∞ ϕT (ω)

[
e−i(ω+i)R+ei(ω+i)R

i(ω+i)

]
dω, the last term of the

above equation. We can compute B by residual theorem:

B =
1

2

(
1

2π
lim

R→∞

∫ +∞

−∞
ϕT (ω)

ei(ω+i)R

i(ω + i)
− 1

2π
lim

R→∞

∫ +∞

−∞
ϕT (−u)

ei(u−i)R

i(i− u)du
)
,

=
−ϕT (−i)

2
,

Thus by definition, we can write that

ϕT (−i) = −2B,

= lim
R→∞

1

2πi

∫ ∞

−∞
ϕT (ω)

ei(ω+i)R − e−i(ω+i)

ω + i
dω,

= Q̃(ST > K)|l=−∞,

= 1.

It comes, as it is mentionned in §2.1, that:

Q̃(ST > K) = 1 +
1

2π

∫ +∞

−∞
ϕT (ω)

e−i(ω+i)l

i(ω + i)
dω.

Since both probabilities are expressed with ϕT we can regroup terms and find the
expression given in (2.5).
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A.4 Greeks computation in the Heston model

We recall here the formula which helps sampling ST from the approximated law of each
scheme:

ST = Sξe

(
r−σ2

2

)
T+σ̄

√
TZ

(A.5)

ξ := e−
ρ2

2

∫ T
0 νsds+ρ

∫ T
0

√
νsdW ν

s and σ̄2 :=
(1− ρ2)

∫ T
0 νsds

T
.

Defining g as the density of the random variable ST , we have:

g(x) :=
d

dx
P(ST ≤ x),

=
d

dx
P(ln(ST ) ≤ ln(x)), (ln is an increasing function)

=
d

dx
P
(
ln(S) +

(
r − σ̄2

2

)
T + σ̄

√
TZ ≤ ln(x)

)
,

=
d

dx
N (k(x)), (N CDF of a standard gaussian r.v.)

=
d

dk
N (k)

d

dx
(k(x)),

=
f(k(x))

xσ̄
√
T
, (f PDF of a standard gaussian r.v.).

We can then compute option greeks, for the Pathwise and Likelihood Ratio approaches.

Likelihood ratio

∂Sg(x)

g(x)
:=

xσ̄
√
T

f(k(x))

(
1

xσ̄
√
T
∂k(f(k))∂S(k(x))

)
,

=
xσ̄
√
T

f(k(x))

(
1

xσ̄
√
T
(−k(x)f(k(x))) −1

Sσ̄
√
T

)
,

=
k(x)

Sσ̄
√
T
.

∂2SSg(x)

g(x)
:=

xσ̄
√
T

f(k(x))
∂S

(
k(x)

Sxσ̄2T
f(k(x))

)
,

=
xσ̄
√
T

f(k(x))

(
1

Sxσ̄2T
[∂S(k(x)f(k(x)))]−

k(x)f(k(x))

S2xσ̄2T

)
,

=
xσ̄
√
T

f(k(x))

(
1

Sxσ̄2T

[−f(k(x))
Sσ̄
√
T

+
k(x)2f(k(x))

Sσ̄
√
T

]
− k(x)f(k(x))

S2xσ̄2T

)
,

=
xσ̄
√
T

f(k(x))

(
k(x)2f(k(x))− f(k(x))

S2xσ̄2T σ̄
√
T

− k(x)f(k(x))

S2xσ̄2T

)
,

=
xσ̄
√
T

f(k(x))

(
f(k(x))

k(x)2 − k(x)σ̄
√
T − 1

S2xσ̄2T σ̄
√
T

)
,

=
k(x)2 − k(x)σ̄

√
T − 1

S2σ̄2T
.

APPENDIX A. CALCULATION DETAILS vii



Calibration and simulation of the Heston model

∂T g(x)

g(x)
:=

xσ̄
√
T

f(k(x))
∂T

(
1

xσ̄
√
T
f(k(x))

)
,

=
xσ̄
√
T

f(k(x))

(
− f(k(x))

2xσ̄T
√
T

+
1

xσ̄
√
T
∂kf(k)∂Tk(x)

)
,

=
xσ̄
√
T

f(k(x))

(
− f(k(x))

2xσ̄T
√
T

+
1

xσ̄
√
T
(−k(x)f(k(x))) ∂Tk(x)

)
,

=
xσ̄
√
T

f(k(x))

(
− f(k(x))

2xσ̄T
√
T

+
1

xσ̄
√
T
(−k(x)f(k(x)))

[
−
ln( x

Sξ ) + (r − σ̄2

2 )T

2σ̄T
√
T

])
,

=
xσ̄
√
T

f(k(x))

f(k(x)) 1

xσ̄
√
T

k(x)
(
ln( x

Sξ ) + (r − σ̄2

2 )T
)
− σ̄
√
T

2σ̄T
√
T

 ,

=
k(x)

(
ln( x

Sξ ) + (r − σ̄2

2 )T
)

2σ̄T
√
T

− 1

2T
.

∂σ̄g(x)

g(x)
:=

xσ̄
√
T

f(k(x))
∂σ̄

(
1

xσ̄
√
T
f(k(x))

)
,

=
xσ̄
√
T

f(k(x))

(
−f(k(x))
xσ̄2
√
T
f(k(x)) +

1

xσ̄
√
T
∂σ̄f(k(x))

)
,

=
xσ̄
√
T

f(k(x))

(
−f(k(x))
xσ̄2
√
T
f(k(x)) +

1

xσ̄
√
T
(−k(x)f(k(x)))∂σ̄k(x)

)
,

=
xσ̄
√
T

f(k(x))

(
−f(k(x))
xσ̄2
√
T
f(k(x)) +

1

xσ̄
√
T
(−k(x)f(k(x)))

[
−
ln( x

Sξ )− (r + σ̄2

2 )T

σ̄2
√
T

])
,

=
xσ̄
√
T

f(k(x))

f(k(x))
xσ̄
√
T

k(x)
[
ln( x

Sξ )− (r + σ̄2

2 )T
]
− σ̄
√
T

σ̄2
√
T

 ,

=
k(x)

σ̄2
√
T

[
ln(

x

Sξ
)− (r +

σ̄2

2
)T

]
− 1

σ̄
.
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Pathwise greeks estimators

∆ :=
d

dS
E
[
(ST −K)+

]
,

= E
[
d

dS

(
Sξe

(
r−σ2

2

)
T+σ̄

√
TZ −K

)
1ST≥K

]
,

= E
[
ST
S

1ST≥K

]
.

Γ :=
d

dS
E
[
(ST −K)+

k(ST )

Sσ̄
√
T

]
, (from the Likelihood Ratio estimator)

= E
[
d

dS

(
−Kk(ST )
Sσ̄
√
T

)
1ST≥K

]
,

= E
[
Kk(ST )

S2σ̄
√
T
1ST≥K

]
.

Θ := − d

dT
E
[
(ST −K)+

]
,

= E
[
− d

dT

(
Sξe

(
r−σ2

2

)
T+σ̄

√
TZ −K

)
1ST≥K

]
,

= E
[
−
[
r − σ̄2

2
+

σ̄Z

2
√
T

]
ST 1ST≥K

]
.

ϑ :=
d

dσ̄
E
[
(ST −K)+

]
,

= E
[
d

dσ̄

(
Sξe

(
r−σ2

2

)
T+σ̄

√
TZ −K

)
1ST≥K

]
,

= E
[(
−σ̄T +

√
TZ
)
ST 1ST≥K

]
,
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